Abstract:
Electrodes, which may be composite capacitor electrodes, include carbon fibers, illustratively chopped carbon fibers having an aspect ratio of from about 100-5000, have been treated with a non-ionic surfactant, specifically the polyoxyethyleneglycol octophenyl ether, Triton X-100, to increase the hydrophilicity of the fibers. The capacitive electrodes prepared with the surface-modified carbon fibers exhibit increased charge acceptance.
Abstract:
A battery system includes a lithium ion battery configured to couple to an electrical system, and a battery management system configured to electrically couple to the lithium ion battery and to control one or more recharge parameters of the lithium ion battery. The battery management system is programmed with an electrochemical model, and the battery management system is configured to monitor parameters of the lithium ion battery, and to control the one or more recharge parameters of the lithium ion battery based on the electrochemical model and the one or more monitored parameters. The electrochemical model determines lithium plating reaction kinetics at an anode of the lithium ion battery, determines a quantity of plated lithium at the anode of the lithium ion battery, or both, and indicates a relationship between the one or more monitored parameters and the lithium plating reaction kinetics, the quantity of plated lithium, or both.
Abstract:
A battery system may include a battery that in operation couples to an electrical system, and a battery control module that in operation electrically couples to the battery. The battery control module may read battery data, estimate a state of charge of the battery based at least in part on the battery data, and estimate a state of charge error of the battery based on magnitudes of state of charge error sources. Additionally, the battery control module may update a state of health estimation of the battery when the state of charge error of the battery exceeds a predetermined threshold.
Abstract:
System are described that include an energy storage device adapted to store and release energy and an ultracapacitor. The systems include a switching device coupled to the energy storage device to selectively connect and disconnect the energy storage device to a load, and a second switching device coupled to the ultracapacitor and adapted to connect and disconnect the ultracapacitor to the load. The systems may include a sensor adapted to sense the current draw at the load. The first switching device is activated to connect the energy storage device to the load when a rate of change of the current draw at the load is below a threshold, and the second switching device is activated to connect the ultracapacitor to the load when the rate of change of the current draw at the load is greater than or equal to the threshold.
Abstract:
A 12 volt automotive battery system includes a first battery coupled to an electrical system, in which the first battery include a first battery chemistry, and a second battery coupled in parallel with the first battery and selectively coupled to the electrical system via a first switch, in which the second battery includes a second battery chemistry that has a higher coulombic efficiency than the first battery chemistry. The first switch couples the second battery to the electrical system during regenerative braking to enable the second battery to capture a majority of the power generated during regenerative braking. The 12 volt automotive battery system further includes a variable voltage alternator that outputs a first voltage during regenerative braking to charge the second battery and a second voltage otherwise, in which the first voltage is higher than the second voltage.
Abstract:
A 12 volt automotive battery system includes a first battery directly coupled to an electrical system, in which the first battery includes a first battery chemistry, and a second battery coupled in parallel with the first battery and directly coupled to the electrical system, in which the second battery includes a second battery chemistry with a higher coulombic efficiency than the first battery chemistry. The first battery and the second battery are non-voltage matched such that a voltage range of the second battery is higher than a voltage range of the first battery. The first battery steers power generated during regenerative braking to the second battery using internal resistance of the first battery to enable the second battery to capture a majority of the power generated during regenerative braking, and the second battery provides power to the electrical system due to the higher voltage range of the second battery when the second battery has a positive state of charge.
Abstract:
System are described that include an energy storage device adapted to store and release energy and an ultracapacitor. The systems include a switching device coupled to the energy storage device to selectively connect and disconnect the energy storage device to a load, and a second switching device coupled to the ultracapacitor and adapted to connect and disconnect the ultracapacitor to the load. The systems may include a sensor adapted to sense the current draw at the load. The first switching device is activated to connect the energy storage device to the load when a rate of change of the current draw at the load is below a threshold, and the second switching device is activated to connect the ultracapacitor to the load when the rate of change of the current draw at the load is greater than or equal to the threshold.
Abstract:
A 12 volt automotive battery system includes a first battery coupled to an electrical system, in which the first battery include a first battery chemistry, and a second battery coupled in parallel with the first battery and selectively coupled to the electrical system via a first switch, in which the second battery includes a second battery chemistry that has a higher coulombic efficiency than the first battery chemistry. The first switch couples the second battery to the electrical system during regenerative braking to enable the second battery to capture a majority of the power generated during regenerative braking. The 12 volt automotive battery system further includes a variable voltage alternator that outputs a first voltage during regenerative braking to charge the second battery and a second voltage otherwise, in which the first voltage is higher than the second voltage.
Abstract:
A battery module includes a power assembly including a first battery cell and a second battery cell in a stacked orientation relative to each other. The first battery cell includes a first tab electrode extending therefrom, and the second battery cell includes a second tab electrode extending therefrom. The battery module also includes an interconnect assembly configured to facilitate electrically coupling the first tab electrode with the second tab electrode. The interconnect assembly includes a roller housing structure about which the first and second tab electrodes at least partially conform such that the first and second tab electrodes are positioned in an opening defined by the roller housing structure. The interconnect assembly also includes a roller disposed in the opening of the roller housing structure such that the first and second tab electrodes are secured in electrical communication.
Abstract:
A system includes a cell interconnect board including a printed circuit board (PCB) disposed proximate a power assembly having a plurality of pouch battery cells, including at least a first battery cell and a second battery cell in a stacked orientation relative to each other. The cell interconnect board includes an interconnect spanning a slot in the cell interconnect board and configured to receive a first tab electrode extending from the first battery cell and a second tab electrode extending from the second battery cell, such that the first and second tab electrodes are in contact with each other. The system also includes a sensor configured to measure a parameter associated with the power assembly.