Abstract:
A method of forming at least a portion of a cable comprises providing at least one conductor, extruding at least an inner layer of polymeric insulation over the at least one conductor to form a cable conductor core, embedding a plurality of conductors into the inner layer of the cable conductor core, and extruding an outer layer of polymeric insulation over the cable conductor core and the plurality of conductors and bonding the inner layer to the outer layer to form the cable and provide a contiguous bond between the inner layer, the conductors, and the outer layer, wherein embedding comprises heating a one of the inner layer and the conductors prior to embedding the conductors into the inner layer.
Abstract:
An electrical cable includes insulated primary conductors and at least one insulated secondary conductor, which extend along the cable. The primary conductors define interstitial spaces between adjacent primary conductors, and the primary conductors have approximately the same diameter. The primary conductors include power conductors and a telemetric conductor. The secondary conductor(s) each have a diameter that is smaller than each of the diameters of the primary conductors, and each secondary conductor is at least partially nested in one of the interstitial spaces. The electrical cable may include at least one fiber optic line.
Abstract:
A cable component is provided that includes at least one optical fiber; and a plurality of shaped profiles having inner and outer surfaces such that the inner surfaces combine to from an enclosure for the at least one optical fiber.
Abstract:
High strength cables formed from strength members. The strength members are formed from bimetallic filament wires which may be encased within a jacket of polymeric material. The bimetallic filament wires wherein the filaments include a high strength core and a corrosion resistant alloy clad forming the outer layer of the filament. The strength members may be used individually, as a central strength member, or even layered around a central axially positioned component or strength member, to form a layer of strength members. Cables of the invention may be of any practical design, including monocables, coaxial cables, quadcables, heptacables, slickline cables, multi-line cables, suspension cables, and the like.
Abstract:
Cables used with wellbore devices to analyze geologic formations adjacent a wellbore are disclosed. The cables include one or more armor wires formed of a high strength core surrounded by a corrosion resistant alloy clad. The cables may be employed as a slickline or multiline cables, where the armor wire is used to convey and suspend loads, such as tools, in a wellbore. The cables may also be useful for providing wellbore related mechanical services, such as, jamming, fishing, and the like.
Abstract:
High strength cables formed from strength members. The strength members are formed from bimetallic filament wires which may be encased within a jacket of polymeric material. The bimetallic filament wires wherein the filaments include a high strength core and a corrosion resistant alloy clad forming the outer layer of the filament. The strength members may be used individually, as a central strength member, or even layered around a central axially positioned component or strength member, to form a layer of strength members. Cables of the invention may be of any practical design, including monocables, coaxial cables, quadcables, heptacables, slickline cables, multi-line cables, suspension cables, and the like.
Abstract:
Disclosed are wellbore electric cables, and methods of manufacturing such cables, and in one aspect, methods of manufacturing wireline composite slickline cables. Some embodiments are methods which include preparing a slickline cable by providing an inner metallic tube containing at least one conductor (such as an optical fiber), disposing an epoxy/fiber composite strength layer substantially upon the outer periphery of the inner metallic tube, and exposing the combination of the inner metallic tube and composite strength layer to at least one technique for minimizing the variation in diameter and providing a substantially uniform circular cross-sectional shape of the combination. Further, an outer metallic tube is draw around the combination of the composite strength member and the inner metallic tube, to form a wellbore slickline. Cables prepared using such methods are also disclosed.
Abstract:
An embodiment of a method for manufacturing a cable, comprises providing a cable core comprising at least one conductor therein, extruding a stopping layer about at least the cable core, extruding a jacketing layer about the stopping layer, and cabling at least one armor wire layer about the jacketing layer to form the cable, wherein the stopping layer comprises a polymer layer configured to mechanically and thermally protect the cable core.
Abstract:
Embodiments disclosed herein relate to a method and a system to deploy a downhole pump within a well. The system includes the downhole pump disposed in a well, the downhole pump having a motor, and a cable having at least one strength member layer bonded to a cable core, in which a first end is connected to a power source disposed at a surface of the well and a second end is connected to the downhole pump. The cable is configured to support and power the downhole pump in the well.
Abstract:
A cable assembly for use in a hydrocarbon well of extensive depth. The cable assembly may be effectively employed at well depths of over 30,000 feet. Indeed, embodiments of the assembly may be effectively employed at depths of over 50,000 feet while powering and directing downhole equipment at a downhole end thereof. The assembly may be made up of a comparatively high break strength uphole cable portion coupled to a lighter downhole cable portion. This configuration helps to ensure the structural integrity of the assembly in light of its own load when disposed in a well to such extensive depths. Additionally, the assembly may be employed at such depths with an intervening connector sub having a signal amplification mechanism incorporated therein to alleviate concern over telemetry between the surface of the oilfield and the downhole equipment.