摘要:
In using an epitaxial growth method to selectively grow on a silicon substrate an epitaxial layer on which an element is to be formed, the epitaxial layer is formed so as to extend upward above a thermal oxide film that is an element isolating insulating film, in order to prevent formation of facets. Subsequently, unwanted portions of the epitaxial layer are removed by means of CMP to complete an STI element isolating structure.
摘要:
A disclosed fabrication method of a semiconductor device includes steps of depositing a dielectric film on a semiconductor substrate; thermally treating the dielectric film; and irradiating an ionized gas cluster onto the thermally treated dielectric film.
摘要:
A semiconductor device manufacturing method includes: forming a sidewall spacer on a sidewall surface of a gate electrode; forming a pair of second conductive type source and drain regions in an active region; covering top surfaces of a semiconductor layer, a device isolation region, the sidewall spacer and the gate electrode with a metal film; reducing resistance of the source and drain regions and the gate electrode partially by making the metal film react with the semiconductor layer and the gate electrode; and removing an unreacted portion of the metal film and the sidewall spacer simultaneously by using an etchant which readily etches the unreacted portion of the metal film and the sidewall spacer while hardly etching the device isolation region, resistance-reduced portions of the gate electrode and resistance-reduced portions of the source and drain regions.
摘要:
A semiconductor device manufacturing method includes: forming a sidewall spacer on a sidewall surface of a gate electrode; forming a pair of second conductive type source and drain regions in an active region; covering top surfaces of a semiconductor layer, a device isolation region, the sidewall spacer and the gate electrode with a metal film; reducing resistance of the source and drain regions and the gate electrode partially by making the metal film react with the semiconductor layer and the gate electrode; and removing an unreacted portion of the metal film and the sidewall spacer simultaneously by using an etchant which readily etches the unreacted portion of the metal film and the sidewall spacer while hardly etching the device isolation region, resistance-reduced portions of the gate electrode and resistance-reduced portions of the source and drain regions.
摘要:
A method of manufacturing a semiconductor device comprises: forming a device isolation, a first conductivity type region, and a second conductivity type region on a semiconductor substrate; depositing a gate insulating film on an entire surface of the semiconductor substrate; forming a first metal film on the gate insulating film; forming a region of a second metal film so as to cover a region that forms a gate electrode of the first conductivity type region; removing the first metal film exposed outside the region of the second metal film by wet etching to expose the gate insulating film; forming a third metal film on the entire surface of the semiconductor substrate; depositing a protecting film on the third metal film; and patterning the first metal film, the second metal film, the third metal film, and the protecting film to form the gate electrode.
摘要:
In a method for manufacturing a semiconductor device, an insulating film is formed on an entire surface of a substrate having a device isolation region and a first and a second conductive region. Then, a semiconductor device structure having a gate electrode forming region is formed on each of the conductive regions, the insulating film being disposed between the gate electrode forming region and each of the conductive regions. A gate electrode groove is formed in the gate electrode forming region of the semiconductor device structure, the insulating film being removed in the gate electrode groove. Thereafter, a gate insulating film and a film of metal gate electrode material are deposited on a bottom surface and a side surface of the gate electrode groove and an alloy is formed by alloying the film of metal gate electrode material deposited in a gate electrode groove of the first conductive region.
摘要:
A semiconductor device having a metal insulator semiconductor field effect transistor (MISFET) with increased electron mobility and enhanced hole mobility is disclosed. In this semiconductor device, a p-type well layer and an n-type well layer are formed in a surface portion of a silicon substrate. A nitrogen-nondoped n-channel interface layer and a nitrogen-free n-channel high dielectric constant gate insulation film plus an n-channel gate electrode are formed in an n-channel MISFET as partitioned by an element isolation region. And, n-type source/drain diffusion layers are provided. In a p-channel MISFET, a nitrogen-doped p-channel interface layer, a nitrogen-added p-channel high dielectric gate insulation film and a p-channel gate electrode are formed along with p-channel source/drain diffusion layers as provided therein. A method of fabricating this semiconductor device is also disclosed.
摘要:
A MOS type semiconductor device has a gate whose length is 170 nm (0.17 .mu.m) or less, a junction depth of source and drain diffusion layers in the vicinity of a channel is 22 nm or less, and a concentration of impurities at the surface in the source and drain diffusion layers is made to 10.sup.20 cm.sup.-3 or more. Such structure is obtained using solid phase diffusion using heat range from 950.degree. C. to 1050.degree. C. and/or narrowing gate width by ashing or etching. The other MOS type semiconductor device is characterized in that the relationship between the junction depth x.sub.j �nm! in the source and drain diffusion layer regions and the effective channel length L.sub.eff �nm! is determined by L.sub.eff >0.69 x.sub.j -6.17.