摘要:
The present invention provides an insulated gate semiconductor device which has floating regions around the bottoms of trenches and which is capable of reliably achieving a high withstand voltage. An insulated gate semiconductor device 100 includes a cell area through which current flows and an terminal area which surrounds the cell area. The semiconductor device 100 also has a plurality of gate trenches 21 in the cell area and a plurality of terminal trenches 62 in the terminal area The gate trenches 21 are formed in a striped shape, and the terminal trenches 62 are formed concentrically. In the semiconductor device 100, the gate trenches 21 and the terminal trenches 62 are positioned in a manner that spacings between the ends of the gate trenches 21 and the side of the terminal trench 62 are uniform. That is, the length of the gate trenches 21 is adjusted according to the curvature of the corners of terminal trench 62.
摘要:
A vertical power MOSFET, which can improve a surge withstand voltage and a surge withstand voltage against a surge voltage from an inductance load L. The vertical power MOSFET has a plurality of unit cells. The unit cell is formed from a MOSFET that uses a p-type base layer at a sidewall of a rectangular U-groove as a channel portion. Each of the p-type base layer of each unit cell is connected each others Accordingly, it can restrain an impurity concentration of a corner portion (a portion positioned at a corner) of the rectangular p-type base layer from being decreased. Therefore, it can reduce the difference in distance from the end portion of the p-type base layer to the end portion of the depletion layer. As a result, it can improve the surge withstand voltage when a surge voltage is input from an inductance load L.
摘要:
A semiconductor device which improves heat radiation performance and realizes size reduction and enables heat to be radiated swiftly from both of the principal surfaces of a semiconductor chip even when the semiconductor chip has a construction vulnerable to stresses. It comprises several IGBT chips each having a collector electrode on one principal surface and an emitter electrode and a gate electrode on the other principal surface and two high thermal conductivity insulating substrates sandwiching these IGBT chips and having electrode patterns for bonding to the electrodes of the IGBT chips disposed on their sandwiching surfaces, the electrodes of the IGBT chips and the electrode patterns of the high thermal conductivity insulating substrates being bonded by brazing.
摘要:
A silicon carbide semiconductor device having a high blocking voltage, low loss, and a low threshold voltage is provided. An n.sup.+ type silicon carbide semiconductor substrate 1, an n.sup.- type silicon carbide semiconductor substrate 2, and a p type silicon carbide semiconductor layer 3 are successively laminated on top of one another. An n.sup.+ type source region 6 is formed in a predetermined region of the surface in the p type silicon carbide semiconductor layer 3, and a trench 9 is formed so as to extend through the n.sup.+ type source region 6 and the p type silicon carbide semiconductor layer 3 into the n.sup.- type silicon carbide semiconductor layer 2. A thin-film semiconductor layer (n type or p type) 11a is extendedly provided on the surface of the n.sup.+ type source region 6, the p type silicon carbide semiconductor layer 3, and the n.sup.- type silicon carbide semiconductor layer 2 in the side face of the trench 9. A gate electrode layer 13 is disposed through a gate insulating layer 12 within the trench 9. A source electrode layer 15 is provided on the surface of the p type silicon carbide semiconductor layer 3 and on the surface of the n.sup.+ type source region 6, and a drain electrode layer 16 is provided on the surface of the n.sup.+ type silicon carbide semiconductor substrate 1.
摘要:
An insulated gate type bipolar-transistor (IGBT) incorporates an excess voltage protecting function and drain voltage fixing function in a monolithic structure. Impurity concentration ND and the thickness of an n.sup.- type drain layer (3) is set so that a depletion region propagating from a p type base layer (7) reaches a p.sup.+ type drain layer at a voltage (V.sub.DSP) lower than a voltage (V.sub.DSS) at which avalanche breakdown is caused within the IGBT element when voltage is applied between the source and the drain.
摘要:
A semiconductor device, which has an oxide laver with the thickness thereof being varied from portion to portion of the inner surface of a trench and can be easily produced, and a process of producing the same. An n.sup.+ type single crystal SiC substrate is formed of SiC of hexagonal system having a carbon face with a (0001) face orientation as a surface, and an n type epitaxial layer and a p type epitaxial layer are successively laminated onto the substrate. An n.sup.+ source region is provided within the p type epitaxial layer, and the trench extends through the source region and the epitaxial layer into the semiconductor substrate. The side face of the trench is almost perpendicular to the surface of the epitaxial layer with the bottom face of the trench having a plane parallel to the surface of the epitaxial layer. The thickness of a gate oxide layer, formed by thermal oxidation, on the bottom face of the trench is larger than the thickness of the gate oxide layer on the side face of the trench. A gate electrode layer is provided on the surface of the oxide layer, formed by thermal oxidation, within the trench, a source electrode layer is provided on the epitaxial layer and the source region, and a drain electrode layer is provided on the back surface of the semiconductor substrate.
摘要翻译:具有其厚度的氧化物紫菜的半导体器件可以从沟槽的内表面的一部分变化,并且可以容易地制造,以及其制造方法。 n +型单晶SiC衬底由具有(0001)面取向的碳面作为表面的六方晶系的SiC形成,并且n型外延层和p型外延层依次层叠在衬底上。 在p型外延层内提供n +源极区,并且沟槽延伸穿过源区和外延层进入半导体衬底。 沟槽的侧面几乎垂直于外延层的表面,沟槽的底面具有平行于外延层的表面的平面。 在沟槽的底面上通过热氧化形成的栅极氧化物层的厚度大于沟槽侧面上的栅极氧化物层的厚度。 在氧化层形成的氧化层的表面上,在沟槽内设置栅极电极层,在外延层和源极区域设置有源电极层,在其背面设有漏电极层 半导体衬底。
摘要:
A vertical MOSFET, which can control AC current flowing through a device only by the gate voltage, is obtained. On an n.sup.+ silicon layer is formed an n.sup.- silicon layer. Within the n.sup.- silicon layer is formed a p-body region. Within the p-body region is formed an n.sup.+ source region. On top of a substrate are formed a source electrode in contact only with the source region and a base electrode in contact only with the p-body region. The source electrode and the base electrode are connected to each other through a resistance at the outside. On a channel region is formed a gate electrode through a gate oxide film (insulating film). When the above semiconductor device is in the reverse bias conduction, the exciting current is controlled only by the gate voltage by setting the current flowing from a source terminal through the resistance to the base electrode, the p-body region and the n.sup.- silicon layer to be negligibly small as compared with the current flowing from the source terminal through the source electrode to the n.sup.+ source region, the channel region and the n.sup.- silicon layer.
摘要:
A power converter for an AC generator for motor vehicles for converting a generated voltage of the AC generator driven by an engine into a DC voltage to feed to a battery includes at least either high-side MOS power transistors for connecting an output end of an armature coil which generates the generated voltage of the AC generator with a high potential end of a battery or low-side MOS power transistors for connecting the output end of the armature coil with a low potential end of the battery. The MOS power transistors each has a source region, a well region and a drain region. A high resistance connected with either a parasitic diode on the side connected with the source generated between the source region and well region or a parasitic diode on the side connected with the drain generated between the drain region and well region in parallel is formed in the MOS power transistors. Thereby, it allows blocking a reverse current produced by the parasitic diode and giving a necessary potential to the well region. Further, SiC is used in the MOS power transistors rather than Si.
摘要:
A power semiconductor device having current detecting function comprising a detection pert that includes the elements of a better reach-through withstand voltage capability than those of a principal current part. The power semiconductor device comprises such elements as DMOS, IGBT or BPT cells. One area of the device acts as the detection part and another as the principal current part. The detection part and the principal current part share as their common electrode a high density substrate having a low density layer of a first conductivity type. The surface of the low density layer carries a principal and a subordinate well region of a second conductivity type each. The surface of the principal well region bears a surface electrode region of the first conductivity type acting as the other electrode of the principal current part; the surface of the subordinate well region carries a surface electrode region of the first conductivity type acting as the other electrode of the detection part. The subordinate well region is made shallower than the principal well region illustratively by use of a mask having narrower apertures through which to form the former region. This causes a reach-through to occur in the principal current part with its well region having a shorter distance to the high density substrate, and not in the detection part with its well region having a longer distance to the substrate.
摘要:
An insulated gate bipolar transistor (IGBT) element has a current detection function. An impurity-diffused area is formed at an area different from a unit cell area on the surface of the element. The current detection is performed by detecting a voltage drop due to carriers flowing in the lateral resistance of the impurity-diffused area. For example, in an n-channel IGBT, electrons are injected from a source electrode through an n-type source layer and the channel to an n-type drain layer at the cell when the unit cell is in an on-state. The pn junction at the drain side is forwardly biased to inject holes from the p-type drain layer to the n-type drain layer. At this time, the electrons also flow to the lower side of the p-type impurity-diffused area provided as the detection portion. Thus, the hole injection occurs at this portion. These surplus holes are discharged through the p-type layer of the detection portion to the source electrode. A potential which corresponds to a product of the lateral resistance of the p-type layer and a hole current appears at the source potential. By detecting this potential and converting the detected potential, an element current can be detected.