摘要:
In various embodiments, solar cells include a junction including SiGe, a junction including at least one III-V material, and may be formed on silicon substrates and/or with silicon-based capping layers thereover.
摘要:
A semiconductor-based structure includes a substrate layer, a compressively strained semiconductor layer adjacent to the substrate layer to provide a channel for a component, and a tensilely strained semiconductor layer disposed between the substrate layer and the compressively strained semiconductor layer. A method for making an electronic device includes providing, on a strain-inducing substrate, a first tensilely strained layer, forming a compressively strained layer on the first tensilely strained layer, and forming a second tensilely strained layer on the compressively strained layer. The first and second tensilely strained layers can be formed of silicon, and the compressively strained layer can be formed of silicon and germanium.
摘要:
A semiconductor-based device includes a channel layer, which includes a distal layer and a proximal layer in contact with the distal layer. The distal layer supports at least a portion of hole conduction for at least one p-channel component, and the proximal layer supports at least a portion of electron conduction for at least one n-channel component. The proximal layer has a thickness that permits a hole wave function to effectively extend from the proximal layer into the distal layer to facilitate hole conduction by the distal layer. A method for fabricating a semiconductor-based device includes providing a distal portion of a channel layer and providing a proximal portion of the channel layer.
摘要:
The invention provides semiconductor structure comprising a strained Ge channel layer, and a gate dielectric disposed over the strained Ge channel layer. In one aspect of the invention, a strained Ge channel MOSFET is provided. The strained Ge channel MOSFET includes a relaxed SiGe virtual substrate with a Ge content between 50-95%, and a strained Ge channel formed on the virtual substrate. A gate structure is formed upon the strained Ge channel, whereupon a MOSFET is formed with increased performance over bulk Si. In another embodiment of the invention, a semiconductor structure comprising a relaxed Ge channel layer and a virtual substrate, wherein the relaxed Ge channel layer is disposed above the virtual substrate. In a further aspect of the invention, a relaxed Ge channel MOSFET is provided. The method includes providing a relaxed virtual substrate with a Ge composition of approximately 100% and a relaxed Ge channel formed on the virtual substrate.
摘要:
Structures and methods for fabricating high speed digital, analog, and combined digital/analog systems using planarized relaxed SiGe as the materials platform. The relaxed SiGe allows for a plethora of strained Si layers that possess enhanced electronic properties. By allowing the MOSFET channel to be either at the surface or buried, one can create high-speed digital and/or analog circuits. The planarization before the device epitaxial layers are deposited ensures a flat surface for state-of-the-art lithography.
摘要:
A method for minimizing particle generation during deposition of a graded Si1-xGex layer on a semiconductor material includes providing a substrate in an atmosphere including a Si precursor and a Ge precursor, wherein the Ge precursor has a decomposition temperature greater than germane, and depositing the graded Si1-xGex layer having a final Ge content of greater than about 0.15 and a particle density of less than about 0.3 particles/cm2 on the substrate.
摘要翻译:在半导体材料上沉积梯度的Si 1-x N x N x层的最小化颗粒产生的方法包括在包括Si前体和Ge的气氛中提供衬底 前体,其中所述Ge前体具有大于锗烷的分解温度,以及沉积具有大于约0.15的最终Ge含量的分级的Si 1-x N x Ge x层;以及 衬底上的颗粒密度小于约0.3颗粒/ cm 2。
摘要:
A method of forming a MOSFET device is provided. The method includes providing a substrate. The method includes forming on the substrate a relaxed SiGe layer having a Ge content between 0.51 and 0.80. Furthermore, the method includes depositing on the relaxed SiGe layer a ε-Si layer.