摘要:
A low fringe-field and narrow write-track magnetic read-write head. The low fringe-field and narrow write-track magnetic read-write head includes a first pole layer formed adjoining an insulator layer over a substrate. The first pole layer has a first air bearing surface which has a first edge adjoining and parallel with a first surface of the insulator layer. The low fringe-field and narrow write-track magnetic read-write head also includes a second pole layer separated from the first pole layer by the insulator layer. The second pole layer has a width no greater than about 20 microns and a width no greater than about 100 percent of the width of the first pole layer where the width of the second pole layer is contained within the width of the first pole layer. The second pole layer also has a second air bearing surface coplanar with the first air bearing surface. The second air bearing surface has a second edge adjoining and parallel with a second surface of the insulator layer parallel and opposite from the first surface of the insulator layer. Finally, there is removed at least one portion of at least one of: (1) the second air bearing surface including at least one outer portion of the second edge; and (2) the first air bearing surface including at least one portion of the first edge most closely adjoining but not opposite the second edge.
摘要:
The problem of increased edge sensitivity associated with the reduction of the spacing between bias magnets in a CPP head has been solved by limiting the width of the bias cancellation layer and by adding an extra layer of insulation to ensure that current through the device flows only through its central area, thereby minimizing its edge reading sensitivity.
摘要:
The problem of increased edge sensitivity associated with the reduction of the spacing between bias magnets in a CPP head has been solved by limiting the width of the bias cancellation layer and by adding an extra layer of insulation to ensure that current through the device flows only through its central area, thereby minimizing its edge reading sensitivity.
摘要:
A magnetic random access memory (MRAM) has memory stacks arranged in the X-Y plane on the MRAM substrate, with each memory stack having two memory cells stacked along the Z axis and each memory cell having an associated biasing layer. Each biasing layer reduces the switching field of its associated cell by applying a biasing field along the hard-axis of magnetization of the free layer of its associated cell. The free layers in the two cells in each stack have their in-plane easy axes of magnetization aligned parallel to one another. Each biasing layer has its in-plane magnetization direction oriented perpendicular to the easy axis of magnetization (and thus parallel to the hard axis) of the free layer in its associated cell. The hard-axis biasing fields generated by the two biasing layers are in opposite directions.
摘要:
Currently, the shield-to-shield separation of a spin valve head cannot be below about 800 Å, mainly due to sensor-to-lead shorting problems. This problem has now been overcome by a manufacturing method that includes inserting a high permeability, high resistivity, thin film shield on the top or bottom (or both) sides of the spin valve sensor. A permeability greater than about 500 is required together with a resistivity about 5 times greater than that of the free layer and an MrT value for the thin film shield that is 4 times greater than that of the free layer.
摘要:
Currently, the shield-to-shield separation of a spin valve head cannot be below about 800 Å, mainly due to sensor-to-lead shorting problems. This problem has now been overcome by inserting a high permeability, high resistivity, thin film shield on the top or bottom (or both) sides of the spin valve sensor. A permeability greater than about 500 is required together with a resistivity about 5 times greater than that of the free layer and an MrT value for the thin film shield that is 4 times greater than that of the free layer. Five embodiments of the invention are described.
摘要:
A major problem in Lead Overlay design for GMR structures is that the magnetic read track width is wider than the physical read track width. This is due to high interfacial resistance between the leads and the GMR layer which is an unavoidable side effect of prior art methods. The present invention uses electroplating preceded by a wet etch to fabricate the leads. This approach requires only a thin protection layer over the GMR layer to ensure that interface resistance is minimal. Using wet surface cleaning avoids sputtering defects and plating is compatible with this so the cleaned surface is preserved Only a single lithography step is needed to define the track since there is no re-deposition involved.
摘要:
A method for fabricating a current-perpendicular-to-plane (CPP) giant magnetoresistive (GMR) sensor of the synthetic spin valve type is provided, the method including an electron-beam lithographic process employing both primary and secondary electron absorption and first and second self-aligned lift-off processes for patterning the capped ferromagnetic free layer and the conducting, non-magnetic spacer layer. The sensor so fabricated has reduced resistance and increased sensitivity.
摘要:
Currently, the shield-to-shield separation of a spin valve head cannot be below about 800 Å, mainly due to sensor-to-lead shorting problems. This problem has now been overcome by inserting a high permeability, high resistivity, thin film shield on the top or bottom (or both) sides of the spin valve sensor. A permeability greater than about 500 is required together with a resistivity about 5 times greater than that of the free layer and an MrT value for the thin film shield that is 4 times greater than that of the free layer. Five embodiments of the invention are described.
摘要:
Currently, the shield-to-shield separation of a spin valve head cannot be below about 800 Å, mainly due to sensor-to-lead shorting problems. This problem has now been overcome by inserting a high permeability, high resistivity, thin film shield on the top or bottom (or both) sides of the spin valve sensor. A permeability greater than about 500 is required together with a resistivity about 5 times greater than that of the free layer and an MrT value for the thin film shield that is 4 times greater than that of the free layer. Five embodiments of the invention are described.