Abstract:
A method of making a semiconductor structure comprises forming an oxide layer on a substrate; forming a silicon nitride layer on the oxide layer; annealing the layers in NO; and annealing the layers in ammonia. The equivalent oxide thickness of the oxide layer and the silicon nitride layer together is at most 25 Angstroms.
Abstract:
A semiconductor structure and method to form the same. The semiconductor structure includes a substrate having a non-volatile charge trap memory device disposed on a first region and a logic device disposed on a second region. A charge trap dielectric stack may be formed subsequent to forming wells and channels of the logic device. HF pre-cleans and SC1 cleans may be avoided to improve the quality of a blocking layer of the non-volatile charge trap memory device. The blocking layer may be thermally reoxidized or nitridized during a thermal oxidation or nitridation of a logic MOS gate insulator layer to densify the blocking layer. A multi-layered liner may be utilized to first offset a source and drain implant in a high voltage logic device and also block silicidation of the nonvolatile charge trap memory device.
Abstract:
A semiconductor topography is provided which includes a silicon dioxide layer with a thickness equal to or less than approximately 10 angstroms and a silicon nitride layer arranged upon the silicon dioxide layer. In addition, a method is provided which includes growing an oxide film upon a semiconductor topography in the presence of an ozonated substance and depositing a silicon nitride film upon the oxide film. In some embodiments, the method may include growing the oxide film in a first chamber at a first temperature and transferring the semiconductor topography from the first chamber to a second chamber while the semiconductor topography is exposed to a substantially similar temperature as the first temperature. In either embodiment, the method may be used to form a semiconductor device including an oxide-nitride gate dielectric having an electrical equivalent oxide gate dieletric thickness of less than approximately 20 angstroms.
Abstract:
In one embodiment, an integrated circuit includes a PMOS transistor having a gate stack comprising a P+ doped gate polysilicon layer and a nitrided gate oxide (NGOX) layer. The NGOX layer may be over a silicon substrate. The integrated circuit further includes an interconnect line formed over the transistor. The interconnect line includes a hydrogen getter material and may comprise a single material or stack of materials. The interconnect line advantageously getters hydrogen (e.g., H2 or H2O) that would otherwise be trapped in the NGOX layer/silicon substrate interface, thereby improving the negative bias temperature instability (NBTI) lifetime of the transistor.
Abstract:
A semiconductor structure including a semiconductor substrate, an isolation trench in the semiconductor substrate, and an alignment trench in the semiconductor substrate is disclosed. The structure also includes a dielectric layer and a metallic layer. The dielectric layer is on the semiconductor substrate and in both the isolation trench and the alignment trench. The dielectric layer fills the isolation trench and does not fill the alignment trench. The metallic layer is on the dielectric layer.
Abstract:
A method for processing a semiconductor topography is provided, which includes diffusing deuterium across one or more interfaces of a silicon-oxide-nitride-oxide-silicon (SONOS) structure. In particular, the method may include diffusing deuterium across one or more interfaces of a SONOS structure during a reflow of a dielectric layer spaced above the SONOS structure. In some embodiments, the method may include forming a deutereated nitride layer above the SONOS structure prior to the reflow process. In addition or alternatively, the method may include forming a deutereated nitride layer within the SONOS structure prior to the reflow process. In some cases, the method may further include annealing the SONOS structure with a deutereated substance prior to forming the deutereated nitride layer. In either embodiment, a SONOS structure may be formed which includes deuterium arranged within an interface of a silicon layer and an oxide layer of the structure.
Abstract:
In one embodiment, a passivation level includes a low-k dielectric. The low-k dielectric helps lower the capacitance of a metal line in a last metal level, which may be just below the passivation level. In another embodiment, the metal line is relatively thick. This helps lower the metal line's resistance and resulting RC delay.
Abstract:
A method is provided for determining a concentration profile of an impurity within a layer of a semiconductor topography. The method may include exposing the layer and an underlying layer to oxidizing conditions. In addition, the method may include comparing thickness measurements of total dielectric above the underlying layer taken before and after exposing the topography to oxidizing conditions . In some cases, the comparison may include plotting pre-oxidation thickness measurements versus post-oxidation measurements. In other embodiments, the comparison may include determining differences between the pre-oxidation and post-oxidation thickness measurements and correlating the differences to concentrations of the impurity. In some cases, such a correlation may include subtracting a concentration of the impurity at a first location along the semiconductor topography from a concentration of the impurity at a second location along the semiconductor topography.
Abstract:
In one embodiment, a metal level includes a plurality of metal lines. A low-k dielectric is deposited over the metal level such that an air gap forms at least between two metal lines. The relatively low dielectric constant of the low-k dielectric reduces capacitance on metal lines regardless of whether an air gap forms or not. The air gap in the low-k dielectric further reduces capacitance on metal lines. The reduced capacitance translates to lower RC delay and faster signal propagation speeds.
Abstract:
A method of forming a top oxide layer of a SONOS-type nonvolatile storage device is disclosed. According to a first embodiment, a method may include forming an in situ steam generation (ISSG) top oxide layer 208 from a charge storing dielectric layer 206 by reacting hydrogen and oxygen on a wafer surface (step 102) and depositing a conductive gate layer 210 (step 104). An ISSG top oxide layer 208 may be of higher quality and formed with a smaller thermal budget than conventional approaches.