Abstract:
Disclosed technology relates generally to integrated circuits, and more particularly, to structures incorporating and methods of forming metal lines including tungsten and carbon, such as conductive lines for memory arrays. In one aspect, a memory device comprises a lower conductive line extending in a first direction and an upper conductive line extending in a second direction and crossing the lower conductive line, wherein at least one of the upper and lower conductive lines comprises tungsten and carbon. The memory device additionally comprises a memory cell stack interposed at an intersection between the upper and lower conductive lines. The memory cell stack includes a first active element over the lower conductive line and a second active element over the first active element, wherein one of the first and second active elements comprises a storage element and the other of the first and second active elements comprises a selector element. The memory cell stack further includes an electrode interposed between the at least one of the upper and lower conductive lines and the closer of the first and second active elements.
Abstract:
Memory cell architectures and methods of forming the same are provided. An example memory cell can include a switch element and a memory element. A middle electrode is formed between the memory element and the switch element. An outside electrode is formed adjacent the switch element or the memory element at a location other than between the memory element and the switch element. A lateral dimension of the middle electrode is different than a lateral dimension of the outside electrode.
Abstract:
Methods, systems, and devices for techniques for manufacturing a double electrode memory array are described. A memory device may be fabricated using a sequence of fabrication steps that include depositing a first stack of materials including a conductive layer, an interface layer, and a first electrode layer. The first stack of materials may be etched to form a first set of trenches. A second stack of materials may be deposited on top of the first stack of materials. The second stack may include a second electrode layer in contact with the first electrode layer, a storage layer, and a third electrode layer. The second stack of materials may be etched to form a second set of trenches above the first set of trenches, and filled with a sealing layer and a dielectric material. The sealing layer may not extend substantially into the first set of trenches.
Abstract:
Systems, methods, and apparatus related to dynamically determining read voltages used in memory devices. In one approach, a memory device has a memory array including memory cells. One or more resistors are formed as part of the memory array. A memory controller increments a counter as write operations are performed on the memory cells. When the counter reaches a limit, a write operation is performed on the resistors. The write operation applies voltages to the resistors similarly as applied to the memory cells over time during normal operation. When performing a read operation, a current is applied to one or more of the resistors to determine a boost voltage. When reading the memory cells, a read voltage is adjusted based on the boost voltage. The memory cells are read using the adjusted read voltage.
Abstract:
A method used in forming an array of capacitors comprises forming a stack comprising sacrificial material and insulative material that is between a top and a bottom of the sacrificial material. The insulative material at least predominately comprises at least one of a silicon nitride, a silicon boronitride, and a silicon carbonitride. Horizontally-spaced openings are formed partially through the sacrificial material. A lining is deposited within the horizontally-spaced openings and directly above the sacrificial material. After depositing the lining, the horizontally-spaced openings are extended through remaining of the sacrificial material. The extended horizontally-spaced openings extend through the insulative material. The insulative material with extended horizontally-spaced openings there-through comprises an insulative horizontal lattice. First capacitor electrodes are formed that are individually within individual of the extended horizontally-spaced openings laterally over the lining that is in the extended horizontally-spaced openings. The sacrificial material is removed and forms a capacitor insulator over the first capacitor electrodes and the insulative horizontal lattice. Second-capacitor-electrode material is formed over the capacitor insulator. Structure independent of method is disclosed
Abstract:
Methods, apparatuses, and systems related to depositing a storage node material are described. An example method includes forming a semiconductor structure including a support structure having a first silicate material over a bottom nitride material, a first nitride material over the first silicate material, a second silicate material over the first nitride material, and a second nitride material over the second silicate material. The method further includes removing portions of the second nitride material. The method further includes depositing a third silicate material over the second nitride material and a portion of the second silicate material. The method further includes forming an opening through the semiconductor structure. The method further includes depositing a storage node material within the opening.
Abstract:
Methods, systems, and devices for a resistive interface material are described. A memory device may be fabricated using a sequence of steps that include forming a stack of materials by depositing a first metal layer, depositing a first electrode layer on the metal layer, depositing a memory material on the first electrode layer to form one or more memory cells, depositing a second electrode layer on the memory material, and depositing a second metal layer on the second electrode layer. A lamina (or multiple) having a relatively high resistivity may be included in the stack of materials to reduce or eliminate a current spike that may otherwise occur across the memory cells during an access operation.
Abstract:
Systems, methods, and apparatus related to dynamically determining read voltages used in memory devices. In one approach, a memory device has a memory array including memory cells. One or more resistors are formed as part of the memory array. A memory controller increments a counter as write operations are performed on the memory cells. When the counter reaches a limit, a write operation is performed on the resistors. The write operation applies voltages to the resistors similarly as applied to the memory cells over time during normal operation. When performing a read operation, a current is applied to one or more of the resistors to determine a boost voltage. When reading the memory cells, a read voltage is adjusted based on the boost voltage. The memory cells are read using the adjusted read voltage.
Abstract:
Methods, systems, and devices for a resistive interface material are described. A memory device may be fabricated using a sequence of steps that include forming a stack of materials by depositing a first metal layer, depositing a first electrode layer on the metal layer, depositing a memory material on the first electrode layer to form one or more memory cells, depositing a second electrode layer on the memory material, and depositing a second metal layer on the second electrode layer. A lamina (or multiple) having a relatively high resistivity may be included in the stack of materials to reduce or eliminate a current spike that may otherwise occur across the memory cells during an access operation.
Abstract:
Apparatuses and methods of manufacture are disclosed for phase change memory cell electrodes having a conductive barrier material. In one example, apparatus includes a first chalcogenide structure and a second chalcogenide structure stacked together with the first chalcogenide structure. A first electrode portion is coupled to the first chalcogenide structure, and a second electrode portion is coupled to the second chalcogenide structure. An electrically conductive barrier material is disposed between the first and second electrode portions.