Abstract:
A semiconductor device including stacked structures. The stacked structures include at least two chalcogenide materials or alternating dielectric materials and conductive materials. A liner including alucone is formed on sidewalls of the stacked structures. Methods of forming the semiconductor device are also disclosed.
Abstract:
Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
Abstract:
Disclosed technology relates generally to integrated circuits, and more particularly, to structures incorporating and methods of forming metal lines including tungsten and carbon, such as conductive lines for memory arrays. In one aspect, a memory device comprises a lower conductive line extending in a first direction and an upper conductive line extending in a second direction and crossing the lower conductive line, wherein at least one of the upper and lower conductive lines comprises tungsten and carbon. The memory device additionally comprises a memory cell stack interposed at an intersection between the upper and lower conductive lines. The memory cell stack includes a first active element over the lower conductive line and a second active element over the first active element, wherein one of the first and second active elements comprises a storage element and the other of the first and second active elements comprises a selector element. The memory cell stack further includes an electrode interposed between the at least one of the upper and lower conductive lines and the closer of the first and second active elements.
Abstract:
Graded dielectric layers and methods of fabricating such dielectric layers provide dielectrics in a variety of electronic structures for use in a wide range of electronic devices and systems. In an embodiment, a dielectric layer is graded with respect to a doping profile across the dielectric layer. In an embodiment, a dielectric layer is graded with respect to a crystalline structure profile across the dielectric layer. In an embodiment, a dielectric layer is formed by atomic layer deposition incorporating sequencing techniques to generate a doped dielectric material.
Abstract:
Engineered substrates having epitaxial formation structures with enhanced shear strength and associated systems and methods are disclosed herein. In several embodiments, for example, an engineered substrate can be manufactured by forming a shear strength enhancement material at a front surface of a donor substrate and implanting ions a depth into the donor substrate through the shear strength enhancement material. The ion implantation can form a doped portion in the donor substrate that defines an epitaxial formation structure. The method can further include transferring the epitaxial formation structure from the donor substrate to a front surface of a handle substrate. The shear strength enhancement material can be positioned between the epitaxial formation structure and the front surface of the handle substrate and bridge defects in the front surface of the handle substrate.
Abstract:
Memory cells having a select device material located between a first electrode and a second electrode, a memory element located between the second electrode and a third electrode, and a number of conductive diffusion barrier materials located between a first portion of the memory element and a second portion of the memory element. Memory cells having a select device comprising a select device material located between a first electrode and a second electrode, a memory element located between the second electrode and a third electrode, and a number of conductive diffusion barrier materials located between a first portion of the select device and a second portion of the select device. Manufacturing methods are also described.
Abstract:
Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces are disclosed herein. In one embodiment, a method includes depositing molecules of a gas onto a microfeature workpiece in the reaction chamber and selectively irradiating a first portion of the molecules on the microfeature workpiece in the reaction chamber with a selected radiation without irradiating a second portion of the molecules on the workpiece with the selected radiation. The first portion of the molecules can be irradiated to activate the portion of the molecules or desorb the portion of the molecules from the workpiece. The first portion of the molecules can be selectively irradiated by impinging the first portion of the molecules with a laser beam or other energy source.
Abstract:
Graded dielectric layers and methods of fabricating such dielectric layers provide dielectrics in a variety of electronic structures for use in a wide range of electronic devices and systems. In an embodiment, a dielectric layer is graded with respect to a doping profile across the dielectric layer. In an embodiment, a dielectric layer is graded with respect to a crystalline structure profile across the dielectric layer. In an embodiment, a dielectric layer is formed by atomic layer deposition incorporating sequencing techniques to generate a doped dielectric material.
Abstract:
Memory cells having a select device material located between a first electrode and a second electrode, a memory element located between the second electrode and a third electrode, and a number of conductive diffusion barrier materials located between a first portion of the memory element and a second portion of the memory element. Memory cells having a select device comprising a select device material located between a first electrode and a second electrode, a memory element located between the second electrode and a third electrode, and a number of conductive diffusion barrier materials located between a first portion of the select device and a second portion of the select device. Manufacturing methods are also described.
Abstract:
A semiconductor structure includes a plurality of stack structures overlying a substrate. Each stack structure includes a first chalcogenide material over a conductive material overlying the substrate, an electrode over the first chalcogenide material, a second chalcogenide material over the electrode, a liner on sidewalls of at least one of the first chalcogenide material or the second chalcogenide material, and a dielectric material over and in contact with sidewalls of the electrode and in contact with the liner. Related semiconductor devices and systems, methods of forming the semiconductor structure, semiconductor device, and systems, and methods of forming the liner in situ are disclosed.