Abstract:
The invention concerns a fibrous pulp comprising polypyridobisimidazole fiber, the pulp having a Canadian Standard Freeness (CSF) of no more than about 650 ml, a specific surface area of from 0.5 to 50 square meters per gram, a length-weighted average length of from 0.5 to 2.0 mm, and a equilibrium moisture content of greater than 10 percent by weight. Also provided are papers made from such pulp and processes for making the pulp.
Abstract:
This invention relates to processes for making a honeycomb comprising cells having edges forming a face of the honeycomb, the face defined by a plurality of points and having an area of curvature wherein at least two of the points are located in different tangential planes, comprising the steps of: a) bonding a plurality of sheets along parallel lines of adhesive, the sheets comprising 5 to 50 parts by weight thermoplastic material having a melting point of from 120° C. to 350° C., and 50 to 95 parts by weight high modulus fiber having a modulus of 600 grams per denier (550 grams per dtex) or greater, based on the total amount of thermoplastic material and high modulus fiber in the walls; b) pulling the bonded sheets apart in directions perpendicular to the plane of the sheets to form a honeycomb having cells; c) heating the honeycomb to soften the thermoplastic material; d) bending, molding, or forming the honeycomb in a mold or over a form having an area of curvature; and e) cooling the honeycomb to retain the shape of the area of curvature of the mold or form. Other processes for making a honeycomb include steps for impregnation, b-staging, and/or curing of the honeycomb with resin.This invention also relates to a shaped honeycomb made by this processes wherein less than 25 percent of the honeycomb cells in the area of curvature have a re-entrant angle of greater than 180°.
Abstract:
This invention relates to a honeycomb comprising matrix resin and paper, the paper comprising 50 to 80 parts by weight fibrous material having a modulus of 600 grams per denier (550 grams per dtex) or greater, 0 to 50 parts by weight powdered inorganic material, and 20 parts by weight or greater thermoplastic fiber, the improvement comprising the thermoplastic fiber is a binder for the paper and has a melting temperature above the curing temperature of the matrix resin; a glass transition temperature of greater than 100° C., and the weight average molecular weight of the thermoplastic polymer in the thermoplastic fibers changes 20% or less after being maintained for 10 minutes at the melting temperature.One embodiment of this invention includes an article comprising the aforesaid honeycomb, with such articles including a panel or an aerodynamic structure.
Abstract:
A sheet comprising thermoplastic polymer (TP) and short high tensile modulus fibers, in which the concentration of TP in the middle of the sheet is higher than at the surface of the sheet, useful for making prepregs with a thermoset resin.
Abstract:
A multilayer structure particularly useful in a transformer which contains (a) a first layer of aramid and cellulose wherein (i) the aramid is present as an meta-aramid in an amount of 0 to 50 weight percent floc and 50 to 100 weight percent fibrid, (ii) the cellulose is present in the form of cellulosic pulp fiber and (iii) the aramid is present in an amount of 16 to 75 weight percent and the cellulose is present in an amount of 25 to 84 weight percent, said percentages on the basis of the aramid and cellulose and (b) a second layer containing cellulosic pulp fiber with the proviso that the second layer does not contain aramid.
Abstract:
The invention concerns a paper comprising polypyridobisimidazole floc having a length of from 1.0 to 15 mm, where the apparent density of the paper is from 0.1 to 0.4 g/cm3 and the tensile strength of the paper in N/cm is at least 0.000052X*Y, where X is the volume portion of polypyridobisimidazole in the total solids of the paper in % and Y is basis weight of the paper in g/m2.
Abstract translation:本发明涉及包含长度为1.0至15mm的聚吡啶二咪唑絮凝物的纸,其中纸张的表观密度为0.1至0.4g / cm 3,纸张的拉伸强度为N / cm至少为0.000052X * Y,其中X是聚酰胺二咪唑在纸的总固体中的体积百分比,Y是纸的单位面积重量/ g。
Abstract:
The present invention relates to para-aramid pulp including meta-aramid fibrids for use as reinforcement material in products including for example friction materials, fluid sealing materials, and papers. The invention further relates to processes for making such pulp.
Abstract:
This invention relates to papers made with fibrids containing a polymer or copolymer derived from a monomer selected from the group consisting of 4,4′diaminodiphenyl sulfone, 3,3′diaminodiphenyl sulfone, and mixtures thereof. Such papers have high thermal stability and accept ink more readily than papers made solely with aramid fibrids.
Abstract:
A multilayer structure contains (a) a first layer of aramid and cellulose wherein (i) the aramid is present as an meta-aramid in an amount of 0 to 50 weight percent floc and 50 to 100 weight percent fibrid, (ii) the cellulose is present in the form of cellulosic pulp fiber and (iii) the aramid is present in an amount of 16 to 75 weight percent and the cellulose is present in an amount of 25 to 84 weight percent, said percentages on the basis of the aramid and cellulose and (b) a second layer containing cellulosic pulp fiber with the proviso that the second layer does not contain aramid. The multilayer structure is particularly useful in a transformer.
Abstract:
This invention relates to an improved process for removing conductors and electrical insulation parts from electrical device components so that these devices can be refurbished with new insulation and conductors. This invention also relates to an electrical device component having an electrical winding support, a laminate electrical insulation part, an electrical conductor, and an encapsulating resin, that has a special laminate electrical insulation part that allows more efficient and environmentally friendly refurbishing.