摘要:
This invention relates to a laminate electrical insulation part for an electrical device comprising a thermoplastic film positioned between, adjacent to, and attached to two nonwoven sheets. Each of the nonwoven sheets consists of multicomponent polymeric fibers comprising at least a first polymer and a second polymer, the first polymer having a melting point that is at least 15 degrees Celsius lower than both the melting point of the second polymer and the melting point of the thermoplastic film, and the film is attached to the nonwoven sheets by the first polymer in the nonwoven sheets. The electrical insulation part has a breakdown voltage of at least 3 kilovolts, and a surface having a dynamic frictional coefficient of 0.25 or less. This invention also relates to an electrical device component comprising the laminate electrical insulation part.
摘要:
This invention relates to an improved process for removing conductors and electrical insulation parts from electrical device components so that these devices can be refurbished with new insulation and conductors. This invention also relates to an electrical device component having an electrical winding support, a laminate electrical insulation part, an electrical conductor, and an encapsulating resin, that has a special laminate electrical insulation part that allows more efficient and environmentally friendly refurbishing.
摘要:
This invention relates to an improved process for removing conductors and electrical insulation parts from electrical device components so that these devices can be refurbished with new insulation and conductors. This invention also relates to an electrical device component having an electrical winding support, a laminate electrical insulation part, an electrical conductor, and an encapsulating resin, that has a special laminate electrical insulation part that allows more efficient and environmentally friendly refurbishing.
摘要:
This invention is directed to a folded tessellated core structure having a high compression modulus. The core structure comprises a nonwoven sheet and a cured resin in an amount such that the weight of cured resin as a percentage of combined weight of cured resin and nonwoven sheet is at least 50 percent, The nonwoven sheet further comprises fibers having a modulus of at least 200 grams per denier (180 grams per dtex) and a tenacity of at least 10 grams per denier (9 grams per dtex) wherein, prior to impregnating with the resin, the nonwoven sheet has an apparent density calculated from the equation Dp=K×((dr×(100−% r)/% r)/(1+dr/ds×(100−% r)% r), where Dp is the apparent density of the sheet before impregnation, dr is the density of cured resin, ds is the density of solid material in the sheet before impregnation, % r is the cured resin content in the final core structure in weight %, K is a number with a value from 1.0 to 1.5, Further, the Gurley porosity of the nonwoven sheet before impregnation with the resin is no greater than 30 seconds per 100 milliliters. The invention is also directed to composite structures incorporating such folded core.
摘要:
This invention relates to papers made with floc containing a polymer or copolymer derived from a monomer selected from the group consisting of 4,4′diaminodiphenyl sulfone, 3,3′diaminodiphenyl sulfone, and mixtures thereof. Such papers have higher elongation-at-break and work-to-break (toughness) properties and exhibit less shrinkage at high temperatures than papers made with solely with poly (metaphenylene isophthalamide) floc.
摘要:
The present invention relates to para-aramid pulp including meta-aramid fibrids for use as reinforcement material in products including for example friction materials, fluid sealing materials, and papers. The invention further relates to processes for making such pulp.
摘要:
This invention relates to an improved high performance honeycomb, methods for making the same, and articles including aerodynamic structures comprising the honeycomb, the honeycomb made with a paper that allows rapid impregnation of the honeycomb by structural resins while retarding excessive impregnation of node-line adhesives during manufacture. The honeycomb comprises a paper having a thickness of from 25 to 75 microns and a Gurley porosity of 2 seconds or greater and comprising high modulus fiber and thermoplastic binder having a melt point of from 180° C. to 300° C., wherein at least 30 percent by weight of the total amount of thermoplastic material is in the form of discrete film-like particles in the paper, the particles having a film thickness of about 0.1 to 5 micrometers and a minimum dimension perpendicular to that thickness of at least 30 micrometers.
摘要:
The invention concerns a process for making a fibrillated polypyridobisimidazole floc comprising the steps of: cutting polypyridobisimidazole filaments to an average cut length of from about 0.5 to 10 mm; and applying energy to the polypyridobisimidazole filaments to produce a fibrillated floc having essentially the same average cut length after the application of energy as before the application of energy; where the fibrillated floc having a Canadian Standard Freeness (CSF), when dispersed in water by itself, of from about 400 to 750 ml.
摘要:
A sheet comprising thermoplastic polymer (TP) and short high tensile modulus fibers, in which the concentration of TP in the middle of the sheet is higher than at the surface of the sheet, useful for making prepregs with a thermoset resin.
摘要:
This invention relates to a honeycomb comprising cells having edges forming a face of the honeycomb, the face defined by a plurality of points and having an area of curvature wherein at least two of the points are located in different tangential planes, the walls of the cells comprising 5 to 50 parts by weight thermoplastic material having a melting point of from 120° C. to 350° C., and 50 to 95 parts by weight of a high modulus fiber having a modulus of 600 grams per denier (550 grams per dtex) or greater, based on the total amount of thermoplastic material and high modulus fiber in the walls; wherein less than 25 percent of the honeycomb cells in the area of curvature have a re-entrant angle of greater than 180 degrees. This invention also relates to articles including panels and/or aerodynamic structures comprising the honeycomb.