Abstract:
An apparatus, system, and method of performing adaptive frequency domain equalization in an Orthogonal Frequency Domain Multiplexing (OFDM) based communication system transmitting data information, wherein the method comprises receiving OFDM symbols comprising scattered pilots; obtaining channel estimates on every third bin of the scattered pilots in a frequency domain, wherein the channel estimates are obtained by performing an interpolation in a time domain across the received OFDM symbols; estimating an original channel based on the channel estimates, wherein the original channel in the time domain is estimated by applying a finite impulse response (FIR) low-pass filter in a frequency domain, wherein the FIR low-pass filter is adaptive according to a delay span of an original channel impulse response and is sufficiently wide to cover the delay span of the original channel impulse response; and dividing the received OFDM symbols by the channel estimate to obtain transmitted data information.
Abstract:
A method for correlating scattered pilot locations in a sequence of OFDM symbols in a multi-carrier transmission system, and includes mapping pilot locations comprising pilot symbols having predetermined known values, wherein the pilot symbols are positioned among data subcarriers in time and frequency dimensions consisting of received pilot symbols and having a predetermined position pattern in the time and frequency dimensions, wherein the predetermined position pattern comprises a finite number of sub-position patterns each corresponding to positions of the pilot symbols; estimating a Doppler spread in a frequency spectrum between the transmitter and the receiver in the multi-carrier transmission system; estimating a channel length of a set of channel paths received at the receiver; and the receiver automatically selecting one of a plurality of predetermined methods of correlating the scattered pilot locations in the sequence of OFDM symbols based only on the estimating processes.
Abstract:
An apparatus, logic, and method of performing timing and frequency estimation in a MediaFLO™ mobile multimedia multicast system comprising a receiver and a transmitter, wherein the method comprises receiving a wireless data stream comprising a MediaFLO™ mobile multimedia multicast system superframe comprising Orthogonal Frequency Division Multiplexing (OFDM) symbols; estimating a Fast Fourier Transform (FFT) trigger point for each of the received OFDM symbols; estimating a fine carrier frequency offset of each OFDM symbol; determining the start of the MediaFLO™ mobile multimedia multicast system superframe by locating a Time Division Multiplexed (TDM) pilot symbol in the superframe; estimating a coarse carrier frequency offset of each of the received OFDM symbols; and synchronizing the receiver to the start of the MediaFLO™ mobile multimedia multicast system superframe and the transmitted OFDM symbols based on the fine carrier frequency offset, the TDM pilot symbol, and the coarse carrier frequency offset.
Abstract:
ICI canceling in an OFDM system includes taking a FFT of a wireless electrical signal to produce an OFDM signal; estimating a DC component of a frequency-selective channel in the OFDM system; obtaining an initial estimate of data symbols associated with data bits of the OFDM signal; correcting the data bits with a Viterbi decoder; encoding the corrected data bits to acquire corrected data symbols; re-estimating the DC component of the frequency-selective channel using the corrected data symbols; filtering the corrected data symbols and sub-carrier of the frequency-selective channel; calculating a first order differential function of the frequency-selective channel based on successive ones of the corrected data symbols; removing an ICI component from the calculated first order differential function; and re-estimating the data symbols as a function of the removed ICI component. The filtering occurs using a low pass filter comprising a bank of eight filters.
Abstract:
Digital autonomous AGC for a DVB-H receiver comprises detecting a plurality of RF signals entering a LNA in the DVB-H receiver; detecting a RF transmitter blocker signal occurring at the LNA; and differentiating between a desired RF signal and an undesired RF transmitter blocker signal by varying a differential gain of current through the LNA. A RF servo loop is used for detecting the RF transmitter blocker signal. Logic circuitry of the RF servo loop is integrated with a baseband AGC loop to step control the differential gain of current through the LNA. A RF wideband detector is used for detecting the plurality of RF signals entering the LNA; and sending a voltage output corresponding to voltage levels of the RF signals to a plurality of comparators, wherein each of the plurality of comparators are set at a different programmable voltage threshold level compared with one another.
Abstract:
An apparatus, system, and method of performing adaptive frequency domain equalization in an Orthogonal Frequency Domain Multiplexing (OFDM) based communication system transmitting data information, wherein the method comprises receiving OFDM symbols comprising scattered pilots; obtaining channel estimates on every third bin of the scattered pilots in a frequency domain, wherein the channel estimates are obtained by performing an interpolation in a time domain across the received OFDM symbols; estimating an original channel based on the channel estimates, wherein the original channel in the time domain is estimated by applying a finite impulse response (FIR) low-pass filter in a frequency domain, wherein the FIR low-pass filter is adaptive according to a delay span of an original channel impulse response and is sufficiently wide to cover the delay span of the original channel impulse response; and dividing the received OFDM symbols by the channel estimate to obtain transmitted data information.
Abstract:
Protocol stack layer processing for a MediaFLO™ mobile multimedia multicast system comprising a transmitter comprising a host processor and a host memory component. The processing includes a receiver that receives a wireless data stream comprising a MediaFLO™ mobile multimedia multicast system superframe comprising any of audio, video, and text media frames arranged in multiplexed Multicast Logical Channels (MLCs) and received from the transmitter, wherein each MLC is divided into 16 byte data packets, and wherein each MLC carries up to three logical sub-channels comprising stream 2, stream 1, and stream 0; and an Application Specific Integrated Circuit (ASIC) memory component operatively connected to the receiver, wherein the ASIC memory component performs processing of the data packets using hardware components comprising, a Medium Access Control (MAC) layer core; a stream layer core; a decryption layer core; a defragmentation layer core; and a sync layer core.
Abstract:
A method of estimating coarse frequency offset of received symbols based on a received frequency domain sample at a kth sub-carrier of a 53rd Orthogonal Frequency Division Multiplexing (OFDM) data symbol in a jth time slot (TS) of a receiver in a China Multimedia Mobile Broadcasting (CMMB) mobile television network includes dividing a received sample, Ykj, into two sets of noise only tones and data plus noise tones Dkj, obtaining a received sample only if there is a coarse frequency offset mismatch between a transmitter and the receiver, dividing a summation of a power of the data plus noise tones by a summation of a power of the noise only tones to obtain Λkj, and estimating an integer coarse frequency offset estimate, Δ{circumflex over (f)}Ij, of the received symbols when the Λkj is a maximum.
Abstract:
A technique for providing stable tracking performance to an AGC loop circuit comprises amplifying a wideband radio frequency signal; detecting signals and blockers adjacent to the radio frequency signal; lowering a gain of the radio frequency signal; mixing a local oscillator signal with the radio frequency signal; shifting a frequency of the radio frequency signal from a radio frequency to an intermediate frequency; continuously varying a gain of the intermediate frequency signal; converting the intermediate frequency signal into a digital output signal; comparing the digital output signal with predefined thresholds comprising an upper threshold and a lower threshold; switching a post mixer amplifier (PMA) to a high gain state when an input of a variable gain amplifier (VGA) is greater than the upper threshold, and switching the PMA to a low gain state when an input of the VGA is lower than the lower threshold.
Abstract:
Enhancing a stream layer transmission for a MediaFLO™ mobile multimedia multicast system comprising a transmitter and a receiver. Code word (CW) computations are performed on a current channel being accessed by the receiver. A favorite channel that a user is statistically mostly likely to switch to on the receiver at any particular time is anticipated. The Overhead Information Symbols (OIS) for each favorite channel is periodically monitored. The receiver remains in a sleep mode while data bursts are received from non-favorite channels, and then wakes up during data bursts of the favorite channel. The same CW computations are performed on the favorite channel as were being performed on the current channel. A cyclic redundancy check (CRC) is performed once the CW computations are performed upon selecting the favorite channel.