摘要:
A composite particle is disclosed. The composite particle includes a micron diamond particle. The composite particle also includes a nanoparticle, the nanoparticle attached to a surface of the micron diamond particle by an attachment comprising a covalent bond or an intermolecular force, or a combination thereof. A method of making a composite particle is also disclosed. The method includes providing a micron diamond particle. The method also includes providing a nanoparticle and attaching the nanoparticle to a surface of the micron diamond particle by an attachment comprising a covalent bond or an intermolecular force, or a combination thereof.
摘要:
A nanomatrix carbon composite is disclosed. The nanomatrix carbon composite includes a substantially-continuous, cellular nanomatrix comprising a nanomatrix material. The composite also includes a plurality of dispersed particles comprising a particle core material that comprises an allotrope of carbon dispersed in the nanomatrix and a bond layer extending throughout the nanomatrix between the dispersed particles. The nanomatrix carbon composites are uniquely lightweight, high-strength, high thermal conductivity materials that also provide uniquely selectable and controllable corrosion properties, including very rapid corrosion rates, useful for making a wide variety of degradable or disposable articles, including various downhole tools and components.
摘要:
A powder metal composite is disclosed. The powder metal composite includes a substantially-continuous, cellular nanomatrix comprising a nanomatrix material. The compact also includes a plurality of dispersed particles comprising a particle core material that comprises Mg, Al, Zn or Mn, or a combination thereof, dispersed in the nanomatrix, the core material of the dispersed particles comprising a plurality a plurality of distributed carbon nanoparticles, and a bond layer extending throughout the nanomatrix between the dispersed particles. The nanomatrix powder metal composites are uniquely lightweight, high-strength materials that also provide uniquely selectable and controllable corrosion properties, including very rapid corrosion rates, useful for making a wide variety of degradable or disposable articles, including various downhole tools and components.
摘要:
An improved oil composition is disclosed. The oil composition includes a base oil comprising a hydrocarbon, the base oil having a base thermal conductivity. The oil composition also includes a first additive comprising a plurality of derivatized first additive nanoparticles dispersed within the base oil to form a modified oil having a modified thermal conductivity, wherein the modified thermal conductivity is greater than the base thermal conductivity. Alternately, an improved oil composition includes a base oil comprising a hydrocarbon and a first additive comprising a plurality of derivatized first additive nanoparticles dispersed within the base oil to form a modified oil comprising a stabilized suspension of the derivatized first additive nanoparticles in the base oil.
摘要:
A method of forming a substantially homogeneous suspension of nanodiamond particles and microdiamond particles is disclosed The method includes disposing a first functional group on a plurality of nanodiamond particles to form derivatized nanodiamond particles, and combining the derivatized nanodiamond particles with a plurality of microdiamond particles and a solvent to form a substantially homogeneous suspension of the derivatized nanodiamond particles and microdiamond particles in the solvent. A method of making an article is also disclosed. The method includes forming a superabrasive polycrystalline diamond compact by combining: a plurality of derivatized nanodiamond particles, a plurality of derivatized microdiamond particles having an average particle size greater than that of the derivatized nanodiamond particles, and a metal solvent-catalyst. The method also includes combining the polycrystalline diamond with a substrate comprising a ceramic. The method further includes removing a portion of a metal solvent-catalyst from the polycrystalline diamond compact by leaching.
摘要:
Coated diamond particles have solid diamond cores and at least one graphene layer. Methods of forming coated diamond particles include coating diamond particles with a charged species and coating the diamond particles with a graphene layer. A composition includes a substance and a plurality of coated diamond particles dispersed within the substance. An intermediate structure includes a hard polycrystalline material comprising a first plurality of diamond particles and a second plurality of diamond particles. The first plurality of diamond particles and the second plurality of diamond particles are interspersed. A method of forming a polycrystalline compact includes catalyzing the fox of inter-granular bonds between adjacent particles of a plurality of diamond particles having at least one graphene layer.
摘要:
A method of forming a substantially homogeneous suspension of nanodiamond particles and microdiamond particles is disclosed The method includes disposing a first functional group on a plurality of nanodiamond particles to form derivatized nanodiamond particles, and combining the derivatized nanodiamond particles with a plurality of microdiamond particles and a solvent to form a substantially homogeneous suspension of the derivatized nanodiamond particles and microdiamond particles in the solvent. A method of making an article is also disclosed. The method includes forming a superabrasive polycrystalline diamond compact by combining: a plurality of derivatized nanodiamond particles, a plurality of derivatized microdiamond particles having an average particle size greater than that of the derivatized nanodiamond particles, and a metal solvent-catalyst. The method also includes combining the polycrystalline diamond with a substrate comprising a ceramic. The method further includes removing a portion of a metal solvent-catalyst from the polycrystalline diamond compact by leaching.
摘要:
Removing an asphaltene particle from a substrate includes contacting a silicate nanoparticle with a chemical group to form a functionalized silicate nanoparticle, the chemical group includes a first portion; and a second portion comprising an aromatic moiety, the first portion being bonded to the silicate nanoparticle; contacting the asphaltene particle with the functionalized silicate nanoparticle, the asphaltene particle being disposed on the substrate; interposing the functionalized silicate nanoparticle between the asphaltene particle and the substrate; and separating the asphaltene particle from the substrate with the functionalized silicate nanoparticle to remove the asphaltene particle. A composition includes a functionalized silicate nanoparticle comprising a reaction product of a silicate nanoparticle and an aromatic compound; and a fluid. The aromatic compound includes a chemical group that includes a first portion, the first portion being directly bonded to the silicate nanoparticle in the functionalized silicate nanoparticle; and a second portion including an aromatic moiety.
摘要:
A composite includes a substrate, a binder layer disposed on a surface of the substrate; and a nanofiller layer comprising nanographene and disposed on a surface of the binder layer opposite the substrate. In addition, a nano-coating layer for coating a substrate includes multiple alternating layers of the binder layer and the nanofiller layer. Articles coated with the nano-coating layer prepared from alternating layers of nanofiller layer and binder layer have improved barrier properties, and may be used in down-hole applications.
摘要:
A method of mitigating corrosion of downhole articles includes mixing a plurality of nanoparticles into a first downhole fluid to form a nanoparticle fluid. The method also includes exposing a surface of a downhole article in a wellbore to the nanoparticle fluid. The method further includes disposing a barrier layer comprising a portion of the nanoparticles on the surface of the article and exposing the surface of the downhole article to a second downhole fluid, wherein the barrier layer is disposed between the second downhole fluid and the surface of the article.