Method of forming silicon nanocrystal embedded silicon oxide electroluminescence device with a mid-bandgap transition layer
    41.
    发明授权
    Method of forming silicon nanocrystal embedded silicon oxide electroluminescence device with a mid-bandgap transition layer 有权
    形成具有中带隙过渡层的硅纳米晶体嵌入式氧化硅电致发光器件的方法

    公开(公告)号:US08133822B2

    公开(公告)日:2012-03-13

    申请号:US12197045

    申请日:2008-08-22

    Abstract: A method is provided for forming a silicon (Si) nanocrystal embedded Si oxide electroluminescence (EL) device with a mid-bandgap transition layer. The method provides a highly doped Si bottom electrode, and forms a mid-bandgap electrically insulating dielectric film overlying the electrode. A Si nanocrystal embedded SiOx film layer is formed overlying the mid-bandgap electrically insulating dielectric film, where X is less than 2, and a transparent top electrode overlies the Si nanocrystal embedded SiOx film layer. The bandgap of the mid-bandgap dielectric film is about half that of the bandgap of the Si nanocrystal embedded SiOx film. In one aspect, the Si nanocrystal embedded SiOx film has a bandgap (Eg) of about 10 electronvolts (eV) and mid-bandgap electrically insulating dielectric film has a bandgap of about 5 eV. By dividing the high-energy tunneling processes into two lower energy tunneling steps, potential damage due to high power hot electrons is reduced.

    Abstract translation: 提供了一种用于形成具有中间带隙过渡层的硅(Si)纳米晶体嵌入式Si氧化物电致发光(EL)器件的方法。 该方法提供高度掺杂的Si底部电极,并且形成覆盖电极的中带隙电绝缘膜。 在其中X小于2的中间带隙绝缘电介质膜上形成Si纳米晶体嵌入的SiOx膜层,并且透明顶部电极覆盖在Si纳米晶体嵌入的SiOx膜层上。 中间带隙电介质膜的带隙约为Si纳米晶体嵌入的SiOx膜的带隙的一半。 在一个方面,Si纳米晶体嵌入的SiO x膜具有约10电子伏特(eV)的带隙(Eg),并且中带隙绝缘电介质膜具有约5eV的带隙。 通过将高能隧道工艺分成两个较低能量的隧穿步骤,由于大功率热电子引起的潜在损害降低。

    Optical waveguide amplifier using high quantum efficiency silicon nanocrystal embedded silicon oxide
    42.
    发明授权
    Optical waveguide amplifier using high quantum efficiency silicon nanocrystal embedded silicon oxide 有权
    光波导放大器采用高量子效率硅纳米晶体嵌入式氧化硅

    公开(公告)号:US08054540B2

    公开(公告)日:2011-11-08

    申请号:US12259986

    申请日:2008-10-28

    Abstract: A method is provided for optical amplification using a silicon (Si) nanocrystal embedded silicon oxide (SiOx) waveguide. The method provides a Si nanocrystal embedded SiOx waveguide, where x is less than 2, having a quantum efficiency of greater than 10%. An optical input signal is supplied to the Si nanocrystal embedded SiOx waveguide, having a first power at a first wavelength in the range of 700 to 950 nm. The Si nanocrystal embedded SiOx waveguide is pumped with an optical source having a second power at a second wavelength in a range of 250 to 550 nm. As a result, an optical output signal having a third power is generated, greater than the first power, at the first wavelength. In one aspect, the third power increases in response to the length of the waveguide strip.

    Abstract translation: 提供了使用硅(Si)纳米晶体嵌入式氧化硅(SiO x)波导进行光放大的方法。 该方法提供了Si纳米晶体内置的SiOx波导,其中x小于2,量子效率大于10%。 将光输入信号提供给Si纳米晶体嵌入的SiO x波导,其具有在700至950nm范围内的第一波长的第一功率。 Si纳米晶体埋入的SiOx波导用具有第二波长的第二功率的光源在250至550nm的范围内泵浦。 结果,在第一波长处产生具有大于第一功率的第三功率的光输出信号。 在一个方面,第三功率响应于波导条的长度而增加。

    Light emitting device and planar waveguide with single-sided periodically stacked interface
    43.
    发明授权
    Light emitting device and planar waveguide with single-sided periodically stacked interface 有权
    发光器件和具有单面周期性堆叠接口的平面波导

    公开(公告)号:US08000571B2

    公开(公告)日:2011-08-16

    申请号:US12432209

    申请日:2009-04-29

    CPC classification number: H05B33/26 H05B33/22

    Abstract: Light emitting and waveguide devices with single-sided photonic bandgaps are provided. The light emitting device is formed from a heavily doped silicon (Si) bottom electrode, and a Si-containing dielectric layer embedded Si nanoparticles overlying the bottom electrode. A transparent indium tin oxide (ITO) top electrode overlies the Si-containing dielectric layer, and a photonic bandgap (PBG) Bragg reflector underlies the Si bottom electrode. The PBG Bragg reflector includes at least one periodic bi-layer of films with different refractive indexes. The single-sided photonic bandgap planar waveguide interface is formed from a planar waveguide and a PBG Bragg reflector underlying the planar waveguide.

    Abstract translation: 提供具有单面光子带隙的发光和波导器件。 发光器件由重掺杂的硅(Si)底部电极形成,并且含有Si的电介质层嵌入覆盖在底部电极上的Si纳米颗粒。 透明氧化铟锡(ITO)顶部电极覆盖含Si介电层,光子带隙(PBG)布拉格反射器位于Si底部电极的正下方。 PBG布拉格反射器包括具有不同折射率的膜的至少一个周期性双层膜。 单面光子带隙平面波导接口由平面波导和平面波导下面的PBG布拉格反射器形成。

    Light Emitting Device and Planar Waveguide with Single-Sided Periodically Stacked Interface
    44.
    发明申请
    Light Emitting Device and Planar Waveguide with Single-Sided Periodically Stacked Interface 有权
    发光器件和平面波导,单面定期堆叠接口

    公开(公告)号:US20100278475A1

    公开(公告)日:2010-11-04

    申请号:US12432209

    申请日:2009-04-29

    CPC classification number: H05B33/26 H05B33/22

    Abstract: Light emitting and waveguide devices with single-sided photonic bandgaps are provided. The light emitting device is formed from a heavily doped silicon (Si) bottom electrode, and a Si-containing dielectric layer embedded Si nanoparticles overlying the bottom electrode. A transparent indium tin oxide (ITO) top electrode overlies the Si-containing dielectric layer, and a photonic bandgap (PBG) Bragg reflector underlies the Si bottom electrode. The PBG Bragg reflector includes at least one periodic bi-layer of films with different refractive indexes. The single-sided photonic bandgap planar waveguide interface is formed from a planar waveguide and a PBG Bragg reflector underlying the planar waveguide.

    Abstract translation: 提供具有单面光子带隙的发光和波导器件。 发光器件由重掺杂的硅(Si)底部电极形成,并且含有Si的电介质层嵌入覆盖在底部电极上的Si纳米颗粒。 透明氧化铟锡(ITO)顶部电极覆盖含Si介电层,光子带隙(PBG)布拉格反射器位于Si底部电极的正下方。 PBG布拉格反射器包括具有不同折射率的膜的至少一个周期性双层膜。 单面光子带隙平面波导接口由平面波导和平面波导下面的PBG布拉格反射器形成。

    Enhanced thin-film oxidation process
    45.
    发明授权
    Enhanced thin-film oxidation process 有权
    增强薄膜氧化工艺

    公开(公告)号:US07723242B2

    公开(公告)日:2010-05-25

    申请号:US11327612

    申请日:2006-01-06

    Abstract: A method is provided for additionally oxidizing a thin-film oxide. The method includes: providing a substrate; depositing an MyOx (M oxide) layer overlying the substrate, where M is a solid element having an oxidation state in a range of +2 to +5; treating the MyOx layer to a high density plasma (HDP) source; and, forming an MyOk layer in response to the HDP source, where k>x. In one aspect, the method further includes decreasing the concentration of oxide charge in response to forming the MyOk layer. In another aspect, the MyOx layer is deposited with an impurity N, and the method further includes creating volatile N oxides in response to forming the MyOk layer. For example, the impurity N may be carbon and the method creates a volatile carbon oxide.

    Abstract translation: 提供了另外氧化薄膜氧化物的方法。 该方法包括:提供衬底; 沉积覆盖衬底的MyOx(M氧化物)层,其中M是具有+2至+5范围内的氧化态的固体元素; 将MyOx层处理成高密度等离子体(HDP)源; 并且响应于HDP源形成MyOk层,其中k> x。 在一个方面,该方法还包括响应于形成MyOk层而降低氧化物电荷的浓度。 在另一方面,MyOx层沉积有杂质N,并且该方法还包括响应于形成MyOk层而产生挥发性N氧化物。 例如,杂质N可以是碳,并且该方法产生挥发性碳氧化物。

    Optical Waveguide Amplifier Using High Quantum Efficiency Silicon Nanocrystal Embedded Silicon Oxide
    46.
    发明申请
    Optical Waveguide Amplifier Using High Quantum Efficiency Silicon Nanocrystal Embedded Silicon Oxide 有权
    使用高量子硅光导硅放大器硅纳米晶体硅氧烷

    公开(公告)号:US20090040599A1

    公开(公告)日:2009-02-12

    申请号:US12259986

    申请日:2008-10-28

    Abstract: A method is provided for optical amplification using a silicon (Si) nanocrystal embedded silicon oxide (SiOx) waveguide. The method provides a Si nanocrystal embedded SiOx waveguide, where x is less than 2, having a quantum efficiency of greater than 10%. An optical input signal is supplied to the Si nanocrystal embedded SiOx waveguide, having a first power at a first wavelength in the range of 700 to 950 nm. The Si nanocrystal embedded SiOx waveguide is pumped with an optical source having a second power at a second wavelength in a range of 250 to 550 nm. As a result, an optical output signal having a third power is generated, greater than the first power, at the first wavelength. In one aspect, the third power increases in response to the length of the waveguide strip.

    Abstract translation: 提供了使用硅(Si)纳米晶体嵌入式氧化硅(SiO x)波导进行光放大的方法。 该方法提供了Si纳米晶体内置的SiOx波导,其中x小于2,量子效率大于10%。 将光输入信号提供给Si纳米晶体嵌入的SiO x波导,其具有在700至950nm范围内的第一波长的第一功率。 Si纳米晶体埋入的SiOx波导用具有第二波长的第二功率的光源在250至550nm的范围内泵浦。 结果,在第一波长处产生具有大于第一功率的具有第三功率的光输出信号。 在一个方面,第三功率响应于波导条的长度而增加。

    Graded Junction Silicon Nanocrystal Embedded Silicon Oxide Electroluminescence Device
    47.
    发明申请
    Graded Junction Silicon Nanocrystal Embedded Silicon Oxide Electroluminescence Device 有权
    分级结硅纳米晶体嵌入式硅氧化物电致发光器件

    公开(公告)号:US20090033206A1

    公开(公告)日:2009-02-05

    申请号:US12168771

    申请日:2008-07-07

    Abstract: A silicon (Si) nanocrystal embedded Si oxide electroluminescence (EL) device and associated fabrication process are presented. The method provides a substrate bottom electrode, and forms a plurality of Si nanocrystal embedded SiOx film layers overlying the bottom electrode, where X is less than 2. Each SiOx film layer has a Si excess concentration in a range of about 5 to 30%. The outside film layers sandwich an inner film layer having a lower concentration of Si nanocrystals. Alternately stated, the outside Si nanocrystal embedded SiOx film layers have a higher electrical conductivity than a sandwiched inner film layer. A transparent top electrode is formed over the plurality of Si nanocrystal embedded SiOx film layers. The plurality of Si nanocrystal embedded SiOx film layers are deposited using a high density plasma-enhanced chemical vapor deposition (HD PECVD) process. The HD PECVD process initially deposits SiOx film layers, which are subsequently annealed.

    Abstract translation: 介绍了一种硅(Si)纳米晶体内置Si氧化物电致发光(EL)器件及其制造工艺。 该方法提供衬底底部电极,并且形成多个覆盖底部电极的Si纳米晶体的嵌入的SiO x膜层,其中X小于2.每个SiO x膜层的Si过量浓度在约5-30%的范围内。 外层膜层叠具有较低浓度的Si纳米晶体的内膜层。 或者说,外部Si纳米晶体埋入的SiOx膜层具有比夹层内膜层更高的导电性。 在多个Si纳米晶体嵌入的SiOx膜层上形成透明顶部电极。 使用高密度等离子体增强化学气相沉积(HD PECVD)工艺沉积多个Si纳米晶体嵌入的SiOx膜层。 HD PECVD工艺首先沉积SiO x膜层,随后退火。

    Non-stoichiometric SiOxNy optical filters
    48.
    发明申请
    Non-stoichiometric SiOxNy optical filters 审中-公开
    非化学计量的SiOxNy光学滤光片

    公开(公告)号:US20080266689A1

    公开(公告)日:2008-10-30

    申请号:US11789947

    申请日:2007-04-26

    CPC classification number: G02B5/286 Y10T428/259

    Abstract: A non-stoichiometric SiOXNY thin-film optical filter is provided. The filter is formed from a substrate and a first non-stoichiometric SiOX1NY1 thin-film overlying the substrate, where (X1+Y1 0). The first non-stoichiometric SiOX1NY1 thin-film has a refractive index (n1) in the range of about 1.46 to 3, and complex refractive index (N1=n1+ik1), where k1 is an extinction coefficient in a range of about 0 to 0.5. The first non-stoichiometric SiOX1NY1 thin-film may be either intrinsic or doped. In one aspect, the first non-stoichiometric SiOX1NY1 thin-film has nanoparticles with a size in the range of about 1 to 10 nm. A second non-stoichiometric SiOX2NY2 thin-film may overlie the first non-stoichiometric SiOX1NY1 thin-film, where Y1≠Y2. The second non-stoichiometric SiOX1NY1 thin-film may be intrinsic and doped. In another variation, a stoichiometric SiOX2NY2 thin-film, intrinsic or doped, overlies the first non-stoichiometric SiOX1NY1 thin-film.

    Abstract translation: 提供非化学计量的SiO x N Y Y薄膜滤光器。 过滤器由衬底和覆盖在衬底上的第一非化学计量的SiO x N x N 1 N 1薄膜形成,其中(X1 + Y1 <2和Y1> 0) 。 第一非化学计量的SiO x N 1 N 1薄膜的折射率(n1)在约1.46至3的范围内,并且复数折射率(N1 = n1 + ik1),其中k1是约0至0.5范围内的消光系数。 第一非化学计量的SiO x N 1 N 1 X 1薄膜可以是固有的或掺杂的。 在一个方面,第一非化学计量的SiO x N 1 N 1薄膜具有尺寸在约1nm至10nm范围内的纳米颗粒。 第二非化学计量的SiO 2 X 2 N 2 O 2薄膜可以覆盖在第一非化学计量的SiO x N 1 N SUB 2 / >薄膜,其中Y1 <> Y2。 第二非化学计量的SiO x N 1 N 1 Y 1薄膜可以是固有的和掺杂的。 在另一个实施方式中,本征或掺杂的化学计量的SiO 2 X 2 N 2 O 2薄膜覆盖在第一非化学计量的SiO x N N > Y1 薄膜。

    Grayscale reticle for precise control of photoresist exposure
    49.
    发明授权
    Grayscale reticle for precise control of photoresist exposure 失效
    用于精确控制光刻胶曝光的灰度光罩

    公开(公告)号:US07439187B2

    公开(公告)日:2008-10-21

    申请号:US11588891

    申请日:2006-10-27

    CPC classification number: G03F1/54 G03F1/50 Y10S438/942

    Abstract: A method of fabricating a grayscale reticule includes preparing a quartz substrate; depositing a layer of silicon-rich oxide on the quartz substrate; depositing a layer of silicon nitride as an oxidation barrier layer on the silicon-rich oxide layer; depositing and patterning a layer of photoresist; etching the silicon nitride layer with a pattern for the silicon nitride layer; removing the photoresist; cleaning the quartz substrate and the remaining layers; oxidizing the quartz substrate and the layers thereon, thereby converting the silicon-rich oxide layer to a transparent silicon dioxide layer; removing the remaining silicon nitride layer; forming the quartz substrate and the silicon dioxide thereon into a reticule; and using the reticule to pattern a microlens array.

    Abstract translation: 制造灰度网格的方法包括制备石英基片; 在石英衬底上沉积一层富硅氧化物; 在富硅氧化物层上沉积氮化硅层作为氧化阻挡层; 沉积和图案化一层光致抗蚀剂; 用氮化硅层的图案蚀刻氮化硅层; 去除光致抗蚀剂; 清洗石英衬底和其余层; 氧化石英衬底及其上的层,从而将富硅氧化物层转化为透明二氧化硅层; 去除剩余的氮化硅层; 在其上形成石英衬底和二氧化硅到网状物中; 并使用网状物来形成微透镜阵列。

    Micro-pixelated fluid-assay structure with on-board addressable, pixel-specific functionalization
    50.
    发明申请
    Micro-pixelated fluid-assay structure with on-board addressable, pixel-specific functionalization 有权
    微像素化流体测定结构,具有可寻址的像素特征功能

    公开(公告)号:US20080085564A1

    公开(公告)日:2008-04-10

    申请号:US11827173

    申请日:2007-07-10

    Abstract: A digitally-addressable, pixelated, DNA fluid-assay, active-matrix micro-structure formed, utilizing low-temperature TFT and Si technology, on a substrate preferably made of glass or plastic, and including at least one pixel which is defined by (a) an addressable pixel site, (b) a sensor home structure disposed within that site for receiving and hosting a functionalized assay site possessing a DNA oligonucleotide probe, and (c) an addressable, pixel-site-specific, energy-field-producing functionalizer (preferably optical) operable to functionalize such a probe on the assay site. Each pixel may also include a pixel-integrated optical detector. Further disclosed are related methodology facets involving (1) the making of such a micro-structure (a) in a precursor form (without a functionalized probe), and thereafter (b) in a finalized/functionalized form (with such a probe), and (2) the ultimate use of a completed micro-structure in the performance of a DNA assay.

    Abstract translation: 在优选由玻璃或塑料制成的衬底上,利用低温TFT和Si技术形成的可数字寻址,像素化,DNA流体测定,有源矩阵微结构,并且包括至少一个由( a)可寻址像素位点,(b)设置在所述位置内的用于接收和承载具有DNA寡核苷酸探针的官能化测定位点的传感器家庭结构,和(c)可寻址的像素位点特异性能量场产生 功能化剂(优选光学)可操作以在测定位点官能化这种探针。 每个像素还可以包括像素集成的光学检测器。 进一步公开的是相关的方法学方面,其涉及(1)以前体形式(无官能化探针)制备这种微结构(a),此后(b)以最终/功能化形式(具有这种探针), 和(2)在DNA测定的表现中最终使用完整的微结构。

Patent Agency Ranking