摘要:
Methods of forming dual metal gates and the gates so formed are disclosed. A method may include forming a first metal (e.g., NMOS metal) layer on a gate dielectric layer and a second metal (e.g., PMOS metal) layer on the first metal layer, whereby the second metal layer alters a work function of the first metal layer (to form PMOS metal). The method may remove a portion of the second metal layer to expose the first metal layer in a first region; form a silicon layer on the exposed first metal layer in the first region and on the second metal layer in a second region; and form the dual metal gates in the first and second regions. Since the gate dielectric layer is continuously covered with the first metal, it is not exposed to the damage from the metal etch process.
摘要:
Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
摘要:
Transistors having a Hafnium-Silicon gate electrode and high-k dielectric are disclosed. A workpiece is provided having a gate dielectric formed over the workpiece, and a gate formed over the gate dielectric. The gate may comprise a layer of a combination of Hf and Si. The layer of the combination of Hf and Si of the gate establishes the threshold voltage Vt of the transistor. The transistor may comprise a single NMOS transistor or an NMOS transistor of a CMOS device.
摘要:
Devices comprising, and method for fabricating, a MOSFET with a metal gate electrode are disclosed. In one embodiment, the MOSFET includes a first doped region configured to receive current from a current source, a second doped region configured to drain current from the first doped region when an electric field is modified between the first doped region and the second doped region, and a gate electrode configured to modify the electric field. The gate electrode may include a high-k layer, a hafnium-based metal layer formed above the high-k layer, and a polysilicon layer formed above the hafnium-based metal layer. In a further embodiment, the gate electrode further comprises a titanium-based metal layer formed between the hafnium-based metal layer and the polysilicon layer.
摘要:
Transistors and methods of manufacture thereof are disclosed. A workpiece is provided, a gate dielectric is formed over the workpiece, and a gate is formed over the gate dielectric by exposing the workpiece to a precursor of hafnium (Hf) and a precursor of silicon (Si). The gate may comprise a layer of a combination of Hf and Si. The layer of the combination of Hf and Si of the gate establishes the threshold voltage Vt of the transistor. The transistor may comprise a single NMOS transistor or an NMOS transistor of a CMOS device.
摘要:
The method for determining the thickness of a dielectric layer according to the invention comprises the step of providing an electrically conductive body (11) having a dielectric layer (13) which is separated from the electrically conductive body (11) by at least a further dielectric layer (3) and a surface (15) of which is exposed. Onto the exposed surface (15) an electric charge is deposited, thereby inducing an electric potential difference between the exposed surface (15) and the electrically conductive body (11). An electrical parameter relating to the electric potential difference is determined and a measurement is performed to obtain additional measurement data relating to the thickness of the dielectric layer (13) and/or to the thickness of the further dielectric layer (3). In this way the thickness of the dielectric layer (13) and/or of the further dielectric layer (3) is determined. The method of manufacturing an electric device (100) comprises this method for determining the thickness of a dielectric layer. The apparatus (10) for determining the thickness of a dielectric layer is arranged to execute this method.
摘要:
Methods for fabricating two metal gate stacks with varying work functions for complementary metal oxide semiconductor (CMOS) devices are provided A first metal layer may be deposited onto a gate dielectric, followed by the deposition of a second metal layer, where the second metal layer modulated the work function of the first metal layer. The second metal layer and subsequently etch, exposing a portion of the first metal layer. A third metal layer may be deposited on the etched second metal layer and the exposed first metal layer, where the third metal layer may modulate the work function of the exposed first metal layer. Subsequent fabrication techniques were used to define the gate stack.
摘要:
The method for determining the thickness of a dielectric layer according to the invention comprises the step of providing an electrically conductive body (11) having a dielectric layer (13) which is separated from the electrically conductive body (11) by at least a further dielectric layer (3) and a surface (15) of which is exposed. Onto the exposed surface (15) an electric charge is deposited, thereby inducing an electric potential difference between the exposed surface (15) and the electrically conductive body (11). An electrical parameter relating to the electric potential difference is determined and a measurement is performed to obtain additional measurement data relating to the thickness of the dielectric layer (13) and/or to the thickness of the further dielectric layer (3). In this way the thickness of the dielectric layer (13) and/or of the further dielectric layer (3) is determined. The method of manufacturing an electric device (100) comprises this method for determining the thickness of a dielectric layer. The apparatus (10) for determining the thickness of a dielectric layer is arranged to execute this method.
摘要:
Embodiments of the present disclosure are directed towards techniques to provide a memory device with reduced capacitance. In one embodiment, a memory array is formed in a die, and includes one or more pillars and a plurality of wordlines coupled with the one or more pillars. Adjacent wordlines of the plurality of wordlines are separated by respective dielectric layers, which may include components, to reduce capacitance of the plurality of wordlines. The components comprise air gaps or low-k dielectric material. Other embodiments may be described and/or claimed.
摘要:
Embodiments of the invention include sulfur alloyed InGaZnO (IGZOS) thin film transistors (TFTs) and methods of making such devices. In one embodiment, the IGZOS TFT may include a substrate and a gate electrode formed over the substrate. A gate dielectric layer may be formed over the gate electrode. An IGZOS film may be formed over a surface of the gate dielectric. Additionally, embodiments of the invention include a source region and a drain region formed in contact with the IGZOS film. An opening between the source region and the drain region may define a channel region in the IGZOS film. Embodiments of the invention are able to form a p-type IGZO TFT by increasing the valence band of the IGZO material in order to eliminate the presence of trap states in the band gap. The valance band may be raised by doping the IGZO material with sulfur.