Abstract:
Examples of integrated sensors are disclosed herein. An example of an integrated sensor includes a substrate and a sensing member formed on a surface of the substrate. The sensing member includes collapsible signal amplifying structures and an area surrounding the collapsible signal amplifying structures that enables self-positioning of droplets exposed thereto toward the collapsible signal amplifying structures.
Abstract:
A chemical-analysis device integrated with a metallic-nanofinger device for chemical sensing. The chemical-analysis device includes a metallic-nanofinger device, and a platform. The metallic-nanofinger device includes a substrate, and a plurality of nanofingers coupled with the substrate. A nanofinger of the plurality includes a flexible column, and a metallic cap coupled to an apex of the flexible column. At least the nanofinger and a second nanofinger of the plurality of nanofingers are to self-arrange into a close-packed configuration with at least one analyte molecule. A morphology of the metallic cap is to generate a shifted plasmonic-resonance peak associated with amplified luminescence from the analyte molecule. A method for using, and a chemical-analysis apparatus including the chemical-analysis device are also provided.
Abstract:
A switching device includes at least one bottom electrode and at least one top electrode. The top electrode crosses the bottom electrode at a non-zero angle, thereby forming a junction. A metal oxide layer is established on at least one of the bottom electrode or the top electrode. A molecular layer including a monolayer of organic molecules and a source of water molecules is established in the junction. Upon introduction of a forward bias, the molecular layer facilitates a redox reaction between the electrodes, thereby reducing a tunneling gap between the electrodes.
Abstract:
An ionic device includes a layer (220) of an ionic conductor containing first and second species (222, 224) of impurities. The first species (222) of impurity in the layer (220) is mobile in the ionic conductor, and a concentration profile of the first species (222) determines a functional characteristic of the device (200). The second species (224) of impurity in the layer (220) interacts with the first species (222) within the layer (220) to create a structure (226) that limits mobility of the first species (222) in the layer (220).
Abstract:
A surface enhanced Raman spectroscopy system includes a surface enhanced Raman spectroscopy substrate and a laser source configured to emit light within a spectrum of wavelengths toward a predetermined species on or near the surface enhanced Raman spectroscopy substrate. The system further includes a set of filters positioned to be in optical communication with light scattered after the laser light interacts with the predetermined species. Each of the filters in the set is respectively configured to pass scattered light within a different predetermined narrow band of wavelengths. The system also includes a plurality of photodetectors, where each photodetector is positioned adjacent to a respective one of the filters in the set and is configured to output a signal if the scattered light passes through the respective one of the filters. The set of filters is targeted for detection of characteristic peaks of the predetermined species.
Abstract:
A scattering spectroscopy apparatus, system and method employ guided mode resonance (GMR) and a GMR grating. The apparatus includes a GMR grating having a subwavelength grating, and an optical detector configured to receive a portion of a scattered signal produced by an interaction between an excitation signal and an analyte associated with a surface of the GMR grating. A propagation direction of the received portion of the scattered signal is substantially different from a propagation direction of a GMR-coupled portion of the excitation signal within the GMR grating. The system includes the apparatus and an optical source. The method includes exciting a GMR in a GMR grating, interacting a GMR-coupled portion of the excitation signal with an analyte to produce a scattered signal and detecting a portion of the scattered signal.
Abstract:
A multi-tiered network for gathering detected condition information includes a first tier having first tier nodes and a second tier having a second tier node. The second tier node is operable to receive detected condition information from at least one of the first tier nodes in a substantially autonomous manner. In addition, the second tier node is operable to at least one of store, process, and transmit the detected condition information. The network also includes a third tier having a third tier node configured to receive the detected condition information and to at least one of store and process the detected condition information.
Abstract:
Molecule sensing apparatus. The apparatus has first and second chambers, an input port extending into the first chamber, a fluid channel extending from the first chamber to the second chamber, and a surface-enhanced substrate in the second chamber.
Abstract:
Devices to detect a substance and methods of producing such a device are disclosed. An example device to detect a substance includes a housing defining an externally accessible chamber and a seal to enclose at least a portion of the chamber. The example device also includes a substrate includes nanoparticles positioned within the chamber. The nanoparticles to react to the substance when exposed thereto. The example device also includes a non-analytic solution within the chamber to protect the nanoparticles from premature exposure.
Abstract:
An implantable nanosensor includes a stent to be implanted inside a fluid conduit. The stent has a well in a surface of the stent. The implantable nanosensor further includes a nanoscale-patterned sensing substrate disposed in the well. The nanoscale-patterned sensing substrate is to produce an optical scattering response signal indicative of a presence of an analyte in a fluid carried by the fluid conduit when interrogated by an optical stimulus signal.