Abstract:
Methods for preparing microparticles having reduced residual solvent levels. Microparticles are contacted with a non-aqueous washing system to reduce the level of residual solvent in the microparticles. Preferred non-aqueous washing systems include 100% ethanol and a blend of ethanol and heptane. A solvent blend of a hardening solvent and a washing solvent can be used to harden and wash microparticles in a single step, thereby eliminating the need for a post-hardening wash step.
Abstract:
The invention relates to new methods of enzymatic synthesis of polymers such as polyorganosilicones and polyesters, and new polymers made by these methods.
Abstract:
A silicon carbide semiconductor device includes: a semiconductor substrate including a base substrate, a first semiconductor layer, a second semiconductor layer and a third semiconductor layer, which are laminated in this order; a cell portion disposed in the semiconductor substrate and providing an electric part forming portion; and a periphery portion surrounding the cell portion. The periphery portion includes a trench, which penetrates the second and the third semiconductor layers, reaches the first semiconductor layer, and surrounds the cell portion so that the second and the third semiconductor layers are divided by the trench substantially. The periphery portion further includes a fourth semiconductor layer disposed on an inner wall of the trench.
Abstract:
Text is interleaved and transported along with media data over the same real-time Internet Protocol (IP) media transport session. A network processing device identifies text characters corresponding with text signaling. The identified text characters are formatted into text packets and sent over the same real-time IP media transport session used for real-time media transport. The media transport session can identify the sequence that the text characters are transmitted and can specify a maximum character transfer rate.
Abstract:
A manufacturing method of a silicon carbide semiconductor device includes the steps of: preparing a semiconductor substrate including a silicon carbide substrate, a drift layer and a first semiconductor layer; forming a plurality of first trenches in a cell portion; forming a gate layer on an inner wall of each first trench by an epitaxial growth method; forming a first insulation film on the surface of the semiconductor substrate; forming a gate electrode on the first insulation film for connecting to the gate layer electrically; forming a source electrode on the first insulation film for connecting to the first semiconductor layer in the cell portion; and forming a drain electrode connected to the silicon carbide substrate electrically.
Abstract:
The invention relates to new methods of enzymatic synthesis of polymers such as polyorganosilicones and polyesters, and new polymers made by these methods.
Abstract:
A silicon carbide semiconductor device includes: a semiconductor substrate including a base substrate, a first semiconductor layer, a second semiconductor layer and a third semiconductor layer, which are laminated in this order; a cell portion disposed in the semiconductor substrate and providing an electric part forming portion; and a periphery portion surrounding the cell portion. The periphery portion includes a trench, which penetrates the second and the third semiconductor layers, reaches the first semiconductor layer, and surrounds the cell portion so that the second and the third semiconductor layers are divided by the trench substantially. The periphery portion further includes a fourth semiconductor layer disposed on an inner wall of the trench.
Abstract:
Methods for preparing microparticles having reduced residual solvent levels. Microparticles are contacted with a non-aqueous washing system to reduce the level of residual solvent in the microparticles. Preferred non-aqueous washing systems include 100% ethanol and a blend of ethanol and heptane. A solvent blend of a hardening solvent and a washing solvent can be used to harden and wash microparticles in a single step, thereby eliminating the need for a post-hardening wash step.
Abstract:
In a vertical MOSFET, an inactive ion species is ion-implanted into a J-FET portion, a surface channel layer, and/or a base region. The inactive ion species fill intrinsic carbon vacancies or interact with interstitial Si atoms, which are possible origin or responsible for B-diffusion from the base region. Accordingly, the B-diffusion caused by the intrinsic carbon vacancies when the base region is formed is suppressed. The width of the J-FET portion is prevented from being decreased, thereby preventing an increase in resistance of the J-FET portion. Also, the conductive type of the surface channel layer is prevented from being inverted by diffused impurities.
Abstract:
The present invention relates generally to medical compositions, methods and devices/systems for treating vascular diseases. More particularly, the invention relates to medical methods, devices and kits for distributing drug to surrounding vascular tissue to treat neointimal growth. More specifically, the described invention is intended to overcome shortcomings of existing treatments for peripheral artery disease (PAD). Devices and methods of the present invention are specifically intended to treat patients with PAD involving the infrapopliteal (tibial) arteries, e.g., patients having a clinical indication for treatment below the knees (e.g., claudication and/or critical limb ischemia (CLI), and patients with complex disease states, for reducing one or more of morbidity; treatment complications in treated patient populations, a reduction in target lesion revascularization (TLR) rates; and a reduction in patients populations requiring any type of leg amputation.