Abstract:
A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.
Abstract:
A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.
Abstract:
A three dimensional circuit structure including tapered pillars between first and second signal lines. An apparatus including a first plurality of spaced apart coplanar conductors disposed in a first plane over a substrate; a second plurality of spaced apart coplanar conductors disposed in a second plane, the second plane parallel to and different from the first plane; and a plurality of cells disposed between one of the first conductors and one of the second conductors, wherein each of the plurality of cells have a re-entrant profile.
Abstract:
A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.
Abstract:
The present invention relates to personal wash compositions comprising, non-silicate particles, wherein the basal layer(s) carries a net cationic charge. The use of these specific particles results in enhanced properties (e.g., enhanced foaming, hydrotroping) of the personal wash products. The invention further discloses process for decreasing viscosity and/or increasing foam comprising formulating compositions with non-silicate layer compounds as specified.
Abstract:
A low-cost memory cell array includes multiple, vertically-stacked layers of memory cells. In one form, each memory cell is characterized by a small cross-sectional area and a read current less than 6.3 microamperes. The resulting memory array has a slow access time and is well-suited for digital media storage, where access time requirements are low and the dramatic cost reductions associated with the disclosed memory arrays are particularly attractive. In another form, each memory cell includes an antifuse layer and diode components, wherein at least one diode component is heavily doped (to a dopant concentration greater than 1019/cm3), and wherein the read current is large (up to 500 mA).
Abstract:
A FinFET device is fabricated using conventional planar MOSFET technology. The device is fabricated in a silicon layer overlying an insulating layer (e.g., SIMOX) with the device extending from the insulating layer as a fin. Double gates are provided over the sides of the channel to provide enhanced drive current and effectively suppress short channel effects. A plurality of channels can be provided between a source and a drain for increased current capacity. In one embodiment two transistors can be stacked in a fin to provide a CMOS transistor pair having a shared gate.
Abstract:
An integrated circuit device includes a three-dimensional memory array and array terminal circuitry for providing to selected memory cells of the array a write voltage different from a read voltage. Neither voltage is necessarily equal to a VDD power supply voltage supplied to the integrated circuit. The write voltage, particularly if greater than VDD, may be generated by an on-chip voltage generator, such as a charge pump, which may require an undesirably large amount of die area, particularly relative to a higher bit density three-dimensional memory array formed entirely in layers above a semiconductor substrate. In several preferred embodiments, the area directly beneath a memory array is advantageously utilized to layout at least some of the write voltage generator, thus locating the generator near the selected memory cells during a write operation.
Abstract:
A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.
Abstract:
Systems and methods for implementing power management features while providing a wireless asymmetric network are disclosed herein. In one embodiment, a system includes a hub having a wireless control device that is configured to control communications and power consumption in the wireless asymmetric network architecture and sensor nodes each having at least one sensor and a wireless device with a transmitter and a receiver to enable bi-directional communications with the wireless control device of the hub. The wireless control device is configured to determine a scheduled timing of operating each sensor node during a first time period that is close in time with respect to a transmit window of the transmitter and during a second time period that is close in time with respect to a receive window of the receiver for each wireless device to reduce power consumption of the wireless devices of the sensor nodes.