摘要:
Catalyst comprising magnesium oxide and aluminum oxide is prepared by dry blending particulate alumina with a dried composite of magnesia impregnated with hydrogenation metals of Group VIB and Group VIII; the catalyst is employed in selective hydrodesulfurization of cracked naphtha.
摘要:
The process comprises contacting a cracked naphtha in a reaction zone under hydrodesulfurization conditions and in the presence of hydrogen with a catalyst comprising a hydrogenation component comprising a Group VIB metal and a Group VIII metal deposited on a solid support comprising magnesium oxide. The catalyst support may also comprise a refractory inorganic oxide, such as alumina. In the latter case, the catalyst support should contain at least 70 wt.% magnesium oxide to furnish a satisfactory embodiment of the catalyst.
摘要:
A catalytic composition is produced by reacting in an aqueous medium, vanadium and phosphorus compounds together with a hydrogen halide and removing liquid from the resulting reactants to form a solid which in an improved manner is heated at a temperature of about less than 470.degree. C. to effect liberation of water of hydration from the solid and thereafter contacting with a reducing material selected from the group of carbon monoxide, hydrogen and hydrogen sulfide at a temperature of from about 300.degree. to about 600.degree. C. and in the substantial absence of gaseous oxygen other than that liberated from the solid. The specific reduction step as taught and claimed herein improves catalyst activity performance by increasing the catalyst conversion and selectivity to a desired oxygenated product, and the ultimate yield of the oxygenated product per quantity of feed component converted. It also minimizes formation of inactive VPO.sub.5, improves the strength of pellets and reduces the residual chloride content of the catalyst.
摘要:
A process for the isomerization of 1,5 and 1,6-dimethylnaphthalenes to a product including 2,6-dimethylnaphthalene which comprises passing a feed stream containing the 1,5 and 1,6 isomers over a catalyst at isomerization reaction conditions which catalyst consists essentially of from about 35 to about 45 weight per cent of the hydrogen form of mordenite dispersed in an alumina matrix.
摘要:
The present invention provides for a process for reducing the pour point of a hydrocarbon feedstock containing nitrogen- and sulfur-containing impurities. The hydrocarbon feedstock is contacted with hydrogen and a hydrotreating catalyst under hydrotreating conditions whereby a portion of the nitrogen- and sulfur-containing compounds are converted to hydrogen sulfide and ammonia. A portion of the hydrotreater effluent is then passed to a dewaxing zone and contacted with hydrogen under dewaxing conditions in the presence of a dewaxing catalyst containing a borosilicate molecular sieve on silica-alumina-containing matrix.
摘要:
Sulfur oxides are removed from a gas by an absorbent comprising magnesium oxide in association with at least one free or combined rare earth metal selected from the group consisting of lanthanum, cerium, praseodymium, samarium, and dysprosium, wherein the ratio by weight of inorganic oxide or oxides to rare earth metal or metals is from about 0.1 to about 30,000. Absorbed sulfur oxides are recovered as a sulfur-containing gas comprising hydrogen sulfide by contacting the spent absorbent with a hydrocarbon in the presence of a hydrocarbon cracking catalyst at a temperature from about 375.degree. to about 900.degree. C. The absorbent can be circulated through a fluidized catalytic cracking process together with the hydrocarbon cracking catalyst to reduce sulfur oxide emissions from the regeneration zone.
摘要:
An improved fluid catalytic cracking process comprises a method for the regeneration of the fluidizable hydrocarbon conversion catalyst, particularly of the molecular sieve type, which has been deactivated with coke deposits while employed in a hydrocarbon catalytic cracking process, in which the coke-containing hydrocarbon conversion catalyst is contacted with an oxygen-containing gas to burn the coke from the catalyst under conditions providing substantially complete combustion of carbon monoxide and substantially complete combustion of the coke on the catalyst. In the regenerator, particles of the hydrocarbon conversion catalyst are in association with particles of a platinum group metal or rhenium oxidation catalyst which promotes the combustion of carbon monoxide to carbon dioxide. The catalyst composite contains a mixture of cracking catalyst particles and particles having the platinum group metal or rhenium oxidation catalyst supported on a substrate. Evolved heat is recovered by direct heat transfer to the catalyst, for example within a dilute or dense phase zone in the regenerator vessel. The gaseous effluent from the regenerator has a low content of carbon monoxide and may be discharged directly to the atmosphere with little discernible effect upon ambient air quality. The regenerated hydrocarbon conversion catalyst may have less than about 0.05 weight percent coke thereon.
摘要:
An improved fluid catalytic cracking process comprises a method for the regeneration of the fluidizable hydrocarbon conversion catalyst, particularly of the molecular sieve type, which has been deactivated with coke deposits while employed in a hydrocarbon catalytic cracking process, in which the coke-containing hydrocarbon conversion catalyst is contacted with an oxygen-containing gas to burn the coke from the catalyst under conditions providing substantially complete combustion of carbon monoxide and substantially complete combustion of the coke on the catalyst. In the regenerator, particles of the hydrocarbon conversion catalyst are in association with particles of a platinum group metal or rhenium oxidation catalyst which promotes the combustion of carbon monoxide to carbon dioxide. The catalyst composite contains a mixture of cracking catalyst particles and particles having the platinum group metal or rhenium oxidation catalyst supported on a substrate. Evolved heat is recovered by direct heat transfer to the catalyst, for example within a dilute or dense phase zone in the regenerator vessel. The gaseous effluent from the regenerator has a low content of carbon monoxide and may be discharged directly to the atmosphere with little discernible effect upon ambient air quality. The regenerated hydrocarbon conversion catalyst may have less than about 0.05 weight percent coke thereon.
摘要:
Isomerization process for petroleum light hydrocarbons with a boiling point within the range of from about 100.degree. F. (38.degree. C.) to about 210.degree. F. (99.degree. C.) wherein said process comprises contacting said hydrocarbons with a catalyst consisting essentially of an ultrastable, large pore crystalline zeolite aluminosilicate material containing less than 1 (wt)% alkali metal and characterized by well-defined hydroxyl infra-red bands and a maximum unit cubic cell dimension of 24.55 A and a metal component selected from the metals, oxides or sulfides of the Group VIII elements of the Periodic Table, under suitable isomerization conditions.
摘要:
The catalyst comprises a hydrogenation component comprising a member selected from the group consisting of a metal of Group VIA, compounds of a metal of Group VIA, and mixtures thereof supported on a co-catalytic solid support comprising mordenite and a porous refractory inorganic oxide. The hydrogenation component may be characterized further by a member selected from the group consisting of rhenium, compounds of rhenium, a non-noble metal of Group VIII, compounds of a non-noble metal of Group VIII, and mixtures thereof. The preferred Group VIA metal is molybdenum.The catalyst preparation may comprise blending finely-divided mordenite into a sol or gel of the refractory inorganic oxide to form a blend, gelling the blend, if a sol is present, to form a gel by adding a solution of a suitable inorganic ammonium-affording compound, and drying and calcining the gel to form a calcined material.According to the invention, the reforming process comprises contacting a petroleum hydrocarbon stream in a reforming zone under reforming conditions and in the presence of hydrogen with the above catalyst. In one embodiment, the process comprises contacting a partially-reformed hydrocarbon stream in a reforming zone under reforming conditions and in the presence of hydrogen with the above catalyst. In another embodiment, the process comprises contacting the petroleum hydrocarbon stream in a first reforming zone under reforming conditions and in the presence of hydrogen with a catalyst comprising a platinum group metal and a halide on alumina to produce a first reformate and subsequently contacting the first reformate in a second reforming zone under reforming conditions and in the presence of hydrogen with the above catalyst.