Abstract:
A transmitter circuit includes a first synthesizer section, and a second synthesizer section which consumes less current than the first synthesizer section. The transmitter circuit performs switching such that the first synthesizer section is operated and the second synthesizer section is powered off in polar modulation, and the second synthesizer section is operated and the first synthesizer section is powered off in quadrature modulation, thereby reducing consumed power. While the first synthesizer section is operating, calibration for an oscillation frequency is performed, and when the operation is stopped, a calibration value is stored. When an operation of the first synthesizer section is restarted, the stored calibration value is corrected by using temperature change, thereby enhancing calibration accuracy and preventing degradation in quality of a transmission signal.
Abstract:
A transmission circuit (100) according to the present invention includes an RF-IC (110), an EM-IC (120), and a power amplifier (130). The EM-IC (120) includes a DC-DC converter (123), a transistor (124), a low-dropout regulator (121), and a regulator output selector switch (122). After an elapse of a predetermined time from a time when an operation mode of the transmission circuit has switched from a polar modulation mode to a quadrature modulation mode to a time when a power supply voltage for the quadrature modulation mode output from the DC-DC converter (123) stabilizes at a desired value, the regulator output selector switch (122) switches a connection destination of a gate of the transistor (124) to a fixed potential, and outputs as a control voltage the power supply voltage for the quadrature modulation mode output from the DC-DC converter (123).
Abstract:
Provided is a transmission circuit capable of compensating a variation in output power caused due to a temperature change or an individual variability when the operation mode is switched without an increase in the size of the transmission circuit which switches the operation mode between a linear operation mode and a nonlinear operation mode, and capable of suppressing the deterioration of the quality of a transmission signal. In the transmission circuit, a gain setting section (160) sets the gain (target gain) of a variable gain amplifier (140), to a value which enables the variable gain amplifier (140) to operate linearly and corresponds to a comparison result (output error level) obtained through comparison between the target level of the variable gain amplifier (140) corresponding to the set power level of the transmission signal and the power level of an output signal of the variable gain amplifier (140) detected by a power detection section (150). The variable gain amplifier (140) amplifies an amplitude phase modulation signal or a phase modulation signal (phase path signal) in accordance with the target gain set by the gain setting section (160).
Abstract:
Provided is a multiband wireless apparatus that, even if the number of supported frequency bands increases, suppresses increase in the number of components, and completes cell search within a specified time. In a multiband wireless apparatus (1), a reception channel to which a current reception channel is going to be next switched is set in advance for one of a tunable duplexer (13) and a reception dedicated tunable filter (14) that is not connected to an antenna. An antenna switch (15), in a normal transmission/reception mode, connects the antenna to the tunable duplexer (13), and in a compressed mode, switches the connection of the antenna between the tunable duplexer (13) and the reception dedicated tunable filter (14).
Abstract:
A transmission circuit precisely compensates for an offset characteristic of an amplitude modulation section and operates with low distortion and high efficiency over a wide output power range. A signal generation section outputs an amplitude signal and an angle-modulated signal. An amplitude amplifying section supplies, to the amplitude modulation section, a voltage corresponding to a magnitude of an inputted amplitude signal. The amplitude modulation section amplitude-modulates the angle-modulated signal by the voltage supplied from the amplitude amplifying section, thereby outputting a resultant signal as a modulation signal. A temperature measuring section measures a temperature of the amplitude modulation section. An offset compensation section calculates an offset compensation value in accordance with a change, in temperature of the amplitude modulation section, from the temperature of the amplitude modulation section in an initial state, and adds the calculated offset compensation value to the amplitude signal.
Abstract:
Provided is a polar modulation apparatus capable of performing power limit with a simple configuration even when controlling a transmission power and increasing the transmission signal output power control range. A polar modulation device (1) includes an amplitude limit unit (6) for limiting an amplitude component of an amplitude signal, a D/A converter (7) for converting an inputted digital signal into an analog signal, a power control unit (8) for performing power control so that the inputted signal is an output signal based on the power control signal, a voltage control circuit (9) for supplying voltage to an amplitude modulator (11) according to the output signal from the power control unit (8), an angle modulator (10) for performing angle modulation according to a phase signal, and an amplitude modulator (11) for performing amplitude modulation on the signal subjected to angle modulation, according to the voltage supplied from the voltage control circuit (9).
Abstract:
Provided is a frequency modulation circuit 1 for outputting a highly precise frequency-modulated signal regardless of variation in a characteristic of a VCO 15. A correction value calculation section 17 calculates a correction value Vt2 based on a voltage value (Vtx−Vt1) resulting from subtracting a control voltage Vt1, which is generated by a control voltage generation section 11, from a control voltage Vtx at which a sensitivity of the VCO 15 is maximized. A variable amplifier 18 amplifies the correction value Vt2. An addition section 13 outputs a control voltage Vt3, which results from adding the amplified correction value Vt2 to the control voltage Vt1, to the VCO 15 via a DAC 14.
Abstract:
An FM modulator measuring an f-V characteristic of a voltage controlled oscillator in a reduced time period. In the FM modular a characteristic measurement time control section 110 notifies a correction section 108 of a time at which a measurement of the f-V characteristic of a voltage controlled oscillator 103 is to start and a time at which the measurement of the f-V characteristic of the voltage controlled oscillator 103 is to and while a carrier wave frequency is being changed to a predetermined frequency. Thus, the correction section 108 measures the f-V characteristic of the voltage controlled oscillator 103 in a reduced time period.
Abstract:
The direct conversion receiving apparatus has a gain control amplifier for variably amplifying a base band signal based on a gain switching control signal. A high pass filter has a first circuit including capacitors connected in parallel that are inserted in a path connecting an input terminal to an output terminal and switching effective total capacitance of the capacitors based on a first time constant switching control signal, and a second circuit including a resistor for providing a predetermined direct current voltage to the output terminal and switching the effective resistance value of the resistor based on a second time constant switching control signal. A control circuit outputs the gain switching control signal, and the first and second time constant switching control signals according to the change of the gain control of said gain control amplifier.
Abstract:
A receiving device includes a receiver circuit for outputting a received signal as a reception electric field intensity signal, an operation control circuit for controlling an operation of the receiver circuit, and an intermittent reception control circuit for outputting a periodic signal. A comparator circuit holds a first threshold indicating that the receiving device has entered a communication area and a second threshold indicating a start of a continuous electric field intensity measurement. If the reception electric field intensity signal is lower than the second threshold, the operation control circuit makes the receiver circuit perform intermittent operation. If the reception electric field intensity signal is equal to or higher than the second threshold, the operation control circuit makes the receiver circuit perform a continuous operation. If the reception electric field intensity signal is equal to or higher than the first threshold, the operation control circuit makes the demodulation circuit perform an operation.