Abstract:
A highly reliable display device or electronic device is provided. The display device includes a first electrode, a second electrode, a light-emitting layer between the first electrode and the second electrode, and a protective film over the second electrode. The protective film includes a first insulating film and a second insulating film over the first insulating film. The first insulating film includes one or more of aluminum oxide, hafnium oxide, and zirconium oxide, and the second insulating film includes one or more of aluminum oxide, hafnium oxide, and zirconium oxide. A composition of the first insulating film is different from a composition of the second insulating film. A water vapor transmission rate of the protective film is lower than 1×10−2 g/(m2·day).
Abstract:
A flexible device is provided. The hardness of a bonding layer of the flexible device is set to be higher than Shore D of 70, or preferably higher than or equal to Shore D of 80. The coefficient of expansion of a flexible substrate of the flexible device is set to be less than 58 ppm/° C., or preferably less than or equal to 30 ppm/° C.
Abstract:
A flexible device is provided. The hardness of a bonding layer of the flexible device is set to be higher than Shore D of 70, or preferably higher than or equal to Shore D of 80. The coefficient of expansion of a flexible substrate of the flexible device is set to be less than 58 ppm/° C., or preferably less than or equal to 30 ppm/° C.
Abstract:
A film suction mechanism is provided which can prevent a film-like member from warping or sagging for reliable suction, handing over, or the like of the film-like member. A film suction mechanism of the present invention is a film suction mechanism for processing or transferring a flexible film-like member. The film suction mechanism includes a suction unit having a function of attaching the film-like member thereto by suction and an air nozzle having a function of blowing pressurized air onto a first surface of the film-like member. The suction unit includes a plurality of suction pads. The suction unit is capable of attaching a second surface of the film-like member thereto by suction while the pressurized air is blown onto the first surface of the film-like member.
Abstract:
In order to provide a highly reliable organic EL element, a first step in which a deposition material is heated and vaporized in a deposition chamber in which the pressure is reduced and a second step in which a layer included in an EL layer is deposited in the deposition chamber are performed while exhaustion is performed and the partial pressure of water in the deposition chamber is measured with a mass spectrometer. Alternatively, the deposition chamber in the deposition apparatus includes a deposition material chamber and is connected to an exhaust mechanism. The deposition material chamber is separated from the deposition chamber by a sluice valve, includes a deposition material holding portion including a heating mechanism, and is connected to a mass spectrometer and an exhaust mechanism.
Abstract:
Provided is a device in which heat conduction from a sealant to a functional element is suppressed and whose bezel is slim. The sealing structure includes a first substrate, a second substrate whose surface over which a sealed component is provided faces the first substrate, and a frame-like sealant which seals a space between the first substrate and the second substrate with the first substrate and the second substrate. The second substrate includes a groove portion between the sealant and the sealed component. The groove portion is in a vacuum or includes a substance whose heat conductivity is lower than that of the second substrate.
Abstract:
Provided is a highly reliable light-emitting element in which damage to an EL layer is reduced even when an auxiliary electrode for an upper electrode is provided. Further, a highly reliable light-emitting device in which luminance unevenness is suppressed is provided. The light-emitting element includes a first electrode; an insulating layer over the first electrode; an auxiliary electrode having a projection and a depression on a surface, over the insulating layer; a layer containing a light-emitting organic compound over the first electrode and the auxiliary electrode; and a second electrode over the layer containing the light-emitting organic compound. At least part of the auxiliary electrode is electrically connected to the second electrode.
Abstract:
The manufacturing method of the light-emitting device is provided in which an auxiliary electrode in contact with an electrode formed using a transparent conductive film of a light-emitting element is formed using a mask, and direct contact between the auxiliary electrode and an EL layer is prevented by oxidizing the auxiliary electrode. Further, the light-emitting device manufactured according to the method and the lighting device including the light-emitting device are provided.
Abstract:
Provided is a highly reliable light-emitting element in which damage to an EL layer is reduced even when an auxiliary electrode for an upper electrode is provided. Further, a highly reliable light-emitting device in which luminance unevenness is suppressed is provided. The light-emitting element includes a first electrode; an insulating layer over the first electrode; an auxiliary electrode having a projection and a depression on a surface, over the insulating layer; a layer containing a light-emitting organic compound over the first electrode and the auxiliary electrode; and a second electrode over the layer containing the light-emitting organic compound. At least part of the auxiliary electrode is electrically connected to the second electrode.
Abstract:
One surface of a first substrate provided with at least light-absorbing layers separately formed, partition layers each formed between the light-absorbing layers and having an inverse taper shape, and material layers formed on the light-absorbing layers and on the partition layers so that the material layers are separated from each other is disposed to face a deposition target surface of a second substrate; light irradiation is performed from the other surface of the first substrate, only the material layers in regions overlapped with the light-absorbing layers are heated and evaporated to the deposition target surface of the second substrate.