Abstract:
An electronic chip includes a doped semiconductor substrate of a first conductivity type, a doped buried layer of a second conductivity type overlying the substrate, and a first doped well of the first conductivity type overlying the buried layer. Circuit components can be formed at a top surface of the first doped well and separated from the buried layer. A current detector is coupled to the buried layer and configured detect a bias current flowing into or out of the buried layer.
Abstract:
An integrated circuit includes a number of components disposed at a surface of a semiconductor body and an interconnect region connecting the components into a functional circuit. A metallic shield is also produced in the interconnect region. A configurable stage is configurable to operate in a receiving antenna configuration or in a detection configuration during which the integrated circuit is configured to detect a presence of an external electromagnetic radiation representative of an attack by injection of faults.
Abstract:
A circuit for protecting an integrated circuit against fault injection attacks includes an element including a dielectric which is destroyed, resulting in the occurrence of a short-circuit. The element is connected between two terminals that receive a power supply voltage of the integrated circuit.
Abstract:
A device is provided for jamming electromagnetic radiation liable to be emitted by at least one portion of an interconnect region located above at least one zone of an integrated electronic circuit produced in and on a semiconductor substrate. The device includes an antenna located above the at least one zone of the circuit and generating circuit coupled to the antenna and configured to generate an electrical signal having at least one pseudo-random property to pass through the antenna.
Abstract:
In some embodiments, an electronic chip includes a doped semiconductor substrate of a first conductivity type, and wells of the second conductivity type on the side of the front face of the chip, in and on which wells circuit elements are formed. One or more slabs of a second conductivity type are buried under the wells and are separated from the wells. The electronic chip also includes, for each buried slab, a biasable section of the second conductivity type, which extends from the front face of the substrate to the buried slab. A first MOS transistor with a channel of the first conductivity type is disposed in the upper portion of each section, where the first transistor is an element of a flip-flop. A circuit is used for detecting a change in the logic level of one of the flip-flops.
Abstract:
A device for detecting a laser attack made on an integrated circuit chip comprises a bipolar transistor of a first type formed in a semiconductor substrate, that bipolar transistor comprising a parasitic bipolar transistor of a second type. A buried region, forming the base of the parasitic bipolar transistor, operates as a detector of the variations in current flowing caused by impingement of laser light on the substrate.
Abstract:
A device for detecting a laser attack made on an integrated circuit chip comprises a bipolar transistor of a first type formed in a semiconductor substrate, that bipolar transistor comprising a parasitic bipolar transistor of a second type. A buried region, forming the base of the parasitic bipolar transistor, operates as a detector of the variations in current flowing caused by impingement of laser light on the substrate.
Abstract:
An integrated circuit, including: a semiconductor substrate of a first conductivity type; a plurality of regions of the first conductivity type vertically extending from the surface of the substrate, each of the regions being laterally delimited all along its periphery by a region of the second conductivity type; and a device for detecting a variation of the substrate resistance between each region of the first conductivity type and an area for biasing the substrate to a reference voltage.
Abstract:
A device for detecting a laser attack in an integrated circuit chip formed in the upper P-type portion of a semiconductor substrate incorporating an NPN bipolar transistor having an N-type buried layer, including a detector of the variations of the current flowing between the base of said NPN bipolar transistor and the substrate.
Abstract:
An integrated circuit including: a semiconductor substrate of a first conductivity type having at least one well of a second conductivity type laterally delimited, on two opposite walls, by regions of the first conductivity type, defined at its surface; at least one region of the second conductivity type which extends in the semiconductor substrate under the well; and a system for detecting a variation of the substrate resistance between each association of two adjacent regions of the first conductivity type.