Abstract:
In a method for sharing driving images of a second vehicle by a first terminal, which communicates with a first vehicle, in a communication system, the present invention comprises the steps of: storing routes by time of the first vehicle; receiving a first message, for notifying an occurrence of an accident or a hazardous situation, from an electronic device of the first vehicle; if the first message is received, selecting a first route of predetermined time from the stored routes; and transmitting a second message for requesting image information related to the first route among the driving images of the second vehicle.
Abstract:
Disclosed is a 5G or pre-5G communication system for supporting a data transmission rate higher than that of a 4G communication system such as LTE. Provided in the present disclosure is a relay-based communication method for a communication terminal provided in a vehicle, comprising the steps of: acquiring global positioning system (GPS) coordinates of the vehicle; determining a traveling direction of the vehicle on the basis of map information and the GPS coordinates; sensing a traveling lane of the vehicle; generating a location code including information on the GPS coordinates, the traveling direction, and the traveling lane; and generating a message, which includes the generated location code, and transmitting the message.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system that is to support higher data transmission rates after 4G communication systems such as LTE. A method, by a MeNB, for switching a SeNB communicating with a UE in a wireless communication system, provided in an embodiment of the present disclosure, includes receiving, from the UE, a measurement report (MR) of the at least two SeNB neighboring with the UE, determining whether predetermined switch criteria are satisfied based on the MR, and transmitting, to the UE and a first SeNB or a second SeNB, a switch message indicating switching of an SeNB cooperating with the MeNB for communication with the UE from the first SeNB to the second SeNB, based on whether the switch criteria are satisfied.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method and apparatus for performing a relay communication are provided. A remote user equipment (UE) according to the present disclosure is configured to acquire a first parameter related to relay load from each of a plurality of relay candidate UEs, to select a relay UE which will perform a relay communication with the remote UE from among the plurality of relay candidate UEs based on the first parameter acquired from each of the plurality of relay candidate UEs, and to perform the relay communication with the selected relay UE. The first parameter is generated based on cellular communication load between a base station (BS) connected to a corresponding relay candidate UE and the corresponding relay candidate UE.
Abstract:
An apparatus and a method for operating a mobile station in a wireless communication system are provided. The method includes receiving first information transmitted on a secondary carrier from a base station, and transmitting second information for feedback related to the secondary carrier at a feedback region in a primary carrier based on the first information to the base station.
Abstract:
The objective of the present invention is to provide services by effectively switching, by a terminal, a macro cell and a small cell on the basis of time in a communication system in which the macro cell and the small cell coexist. A method for operating a terminal in a wireless communication system comprises the steps of: transmitting, to a first base station and/or a second base station, information on a switching delay time required for the terminal to perform cell switching; and communicating through a resource of the first base station and a resource of the second base station which are allocated by considering the switching delay time.
Abstract:
An apparatus and a method for a handover in a communication system using beamforming are provided. The method includes the operations of receiving handover information from a serving base station, measuring, on the basis of beam scanning, a first reference signal transmitted from the serving base station and a second reference signal transmitted from a target base station, if the result of the measurement satisfies handover conditions, transmitting the result of the measurement to the serving base station, and receiving, on the basis of the handover information, a handover permission message from the target base station.
Abstract:
The present invention relates not only to a 4th-generation (4G) communication system such as long term evolution (LTE) but also to a 5th-generation (5G) or pre-5G communication system to be provided to support a higher data transmission rate. According to the present invention, a first user equipment (UE) is configured to transmit, to a base station, a request message comprising information indicating that a discovery message is to be transmitted through a data channel and information on the amount of data related to the discovery message, receive, from the base station, a control message comprising information on a resource allocated to transmit the discovery message and information indicating that the control message comprises information for the transmission of the discovery message, and transmits the discovery message to a second UE through the data channel based on the control message.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). A method for processing a radio link failure (RLF) by a user equipment (UE) supporting a dual-connectivity communication system is provided. The method includes determining a state of a radio link with a first base station using a reference signal, transmitting to a second base station, when the radio link with the first base station fails, a message indicating that the radio link with the first base station fails, redetermining the state of the radio link with the first base station using a reference signal of the first base station during a predetermined time, and switching, after the predetermined time, a data transmission line when the radio link with the first base station fails.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). An operating method of a user equipment (UE) in a mobile communication system is provided. The operating method includes receiving a service through a first enhanced node B (eNB) for a first time interval period from a first timing point; and receiving the service through a second eNB for a second time interval period from a second timing point, wherein the first timing point is different from the second timing point.