摘要:
A novel process for re-distributing a barrier layer deposited on a single damascene, dual damascene or other contact opening structure. The process includes providing a substrate having a contact opening structure and a metal barrier layer deposited in the contact opening structure, re-sputtering the barrier layer by bombarding the barrier layer with argon ions and metal ions, and re-sputtering the barrier layer by bombarding the barrier layer with argon ions.
摘要:
A method of forming an integrated circuit interconnect structure is presented. A first conductive line is formed over a semiconductor substrate. A conductive cap layer is formed on the first conductive line to improve device reliability. An etch stop layer (ESL) is formed on the conductive cap layer. An inter-level dielectric (IMD) is formed on the ESL. A via opening and a trench are formed in the ESL, IMD, and conductive cap layer. A recess is formed in the first conductive line. The recess can be formed by over etching when the first dielectric is etched, or by a separate process such as argon sputtering. A second conductive line is formed filling the trench, opening and recess.
摘要:
A semiconductor structure having a via formed in a dielectric layer is provided. The exposed pores of the dielectric material along the sidewalls of the via are partially or completely sealed. Thereafter, one or more barrier layers may be formed and the via may be filled with a conductive material. The barrier layers formed over the sealing layer exhibits a more continuous barrier layer. The pores may be partially or completely sealed by performing, for example, a plasma process in an argon environment.
摘要:
A new method and structure is provided for the creation of a copper dual damascene interconnect. A dual damascene structure is created in the layer of dielectric, optionally a metal barrier layer is deposited over exposed surfaces of the dual damascene structure. A copper seed layer is deposited, the dual damascene structure is filled with copper. An anneal is applied to the created copper interconnect after which excess copper is removed from the dielectric. Of critical importance to the invention, a thin layer of oxide is then deposited as a cap layer over the copper dual damascene interconnect, an etch stop layer is then deposited over the thin layer of oxide for continued upper-level metallization.
摘要:
A via having a unique barrier layer structure is provided. In an embodiment, a via is formed by forming a barrier layer in a via. The barrier layer along the bottom of the via is partially or completely removed, and the via is filled with a conductive material. In another embodiment, a first barrier layer is formed along the bottom and sidewalls of the via. Thereafter, the first barrier layer along the bottom of the via is partially or completely removed, and a second barrier layer is formed.
摘要:
A method for forming a barrier layer upon a copper containing conductor layer employs a hydrogen containing plasma treatment of the copper containing conductor layer followed by an argon plasma treatment of the copper containing conductor layer. The barrier layer may be formed employing a chemical vapor deposition method, such as an atomic layer deposition method. When the deposition method employs a metal and carbon containing source material, the two-step plasma pretreatment provides the barrier layer with enhanced electrical properties.
摘要:
A novel method for depositing a barrier layer on a single damascene, dual damascene or other contact opening structure. The method eliminates the need for pre-cleaning argon ion bombardment of the structure, thereby reducing or eliminating damage to the surface of the underlying conductive layer and sputtering of copper particles to the via or other contact opening sidewall. The process includes fabrication of a single damascene, dual damascene or other contact opening structure on a substrate; optionally pre-cleaning the structure typically using nitrogen or hydrogen plasma; depositing a thin metal barrier layer on the sidewalls and bottom of the structure; and redistributing or re-sputtering the barrier layer on the bottom and sidewalls of the structure.
摘要:
Methods are disclosed to improve the planarization of copper damascene by the steps of patterning on the copper damascene a photoresist using a reverse tone photo mask or a reverse tone photo mask of the metal lines, removing excess copper by reverse current plating or by dry or wet chemical etching, stripping the photo resist, and a subsequent chemical mechanical planarization of the copper damascene. Lastly a cap layer is applied to the planarized surface. In a variant of the disclosed method a more relaxed reverse tone photo mask of the metal lines is used, which may be more desirable for practical use. These steps provide benefits such as improved uniformity of the wafer surface, reduce the dishing of metal lines (trenches) and pads, and reduce oxide erosion.
摘要:
A method for in-situ cleaning an electrodeposition surface following an electroplating process including providing a first electrode assembly and a second electrode assembly; applying a first current density across the first electrode assembly and the second electrode assembly for carrying out the electrodeposition process; carrying out the electrodeposition process to electrodeposit a metal onto an electrodeposition surface of the second electrode assembly; and, applying a second current density having a second polarity reversed with reference to the first polarity across the first electrode assembly and the second electrode assembly the second current density having a relatively lower current density compared to the first current density.
摘要:
A method to prevent particle generation from sputtering clean is disclosed, the method comprises of forming a dielectric layer on a substrate, forming a nitrogen-containing dielectric layer on the dielectric layer, forming a plurality of contact holes in the dielectric layer and the nitrogen-containing dielectric layer, coating a sacrificial layer into the contact holes and on the nitrogen-containing dielectric layer, removing the sacrificial layer and the nitrogen-containing dielectric layer on top of the dielectric layer, removing said sacrificial layer in said contact holes and performing an argon sputtering clean.