Abstract:
The present invention relates to a liquid crystal drive display device, including a display area and a liquid crystal drive circuit, the liquid crystal drive circuit including a plurality of stage GOA circuits, each stage GOA circuit includes a signal line and an auxiliary pull-down circuit, wherein the signal lines are divided into odd-numbered signal lines and even-numbered signal lines, the auxiliary pull-down circuits are divided into first auxiliary pull-down circuits and second auxiliary pull-down circuits; wherein the odd-numbered signal lines and the even-numbered signal lines are separately located on two sides of the display area, and the first auxiliary pull-down circuits and the second auxiliary pull-down circuits are also separately located on two sides of the display area, any two adjacent stage GOA circuits of the plurality of stage GOA circuits share the first auxiliary pull-down circuits and the second auxiliary pull-down circuits.
Abstract:
A deskew display panel is disclosed in present invention. The deskew display panel includes a plurality of data lines arranged in a column direction, a plurality of scanning lines perpendicular to the column direction and intersecting the data lines; a sub-pixel array including a plurality of sub-pixels arranged in array, each sub-pixel including a transistor and disposed between any two neighboring scanning lines and any two neighboring data lines; the scanning lines disposed in the sub-pixel array and parallel to each other; sub-pixels in each row including a plurality of sub-pixel sets, each sub-pixel set including two sub-pixels, the sub-pixel including the transistor, gates of the transistors connected to two neighboring scanning lines respectively, sources of the transistors connected to the same data line, and drains of the transistors connected to a liquid crystal capacitor and a storage capacitor.
Abstract:
The invention discloses a liquid crystal display device and its display panel. The display panel includes: a display region; a fan-out region, which is connected to at least one side of the display region; the fan-out region includes at least one group of fan-out wires, each group of the fan-out wires includes a plurality of wires, the wires include a first layer of metal wires and a second layer of metal wires that are disposed alternately, a part of the first layer of metal wires and the second layer of metal wires that are adjacent is overlapped. By the method above, the invention can reduce RC delay between the wires of each group of fan-out wires and improve display quality.
Abstract:
A thin-film transistor (TFT) switch includes a gate, a drain, a source, a semiconductor layer, and a fourth electrode. The drain is connected to a first signal. The gate is connected to a control signal to control the switch on or off. The source outputs the first signal when the switch turns on. The fourth electrode and the gate are respectively located at two sides of the semiconductor layer. The fourth electrode is conductive and is selectively coupled to different voltage levels, thereby reducing leakage current in a channel to improve switch characteristic when the switch turns off.
Abstract:
The present invention proposes a TFT switch and a method for manufacturing the same. The TFT switch includes a gate, a drain, a source, a semiconductor layer and a fourth electrode. The drain is connected to a first signal, the gate is connected to a control signal to control the switch on or off. The source outputs the first signal when the switch turns on. The fourth electrode and the gate are respectively located at two sides of the semiconductor layer. The fourth electrode is conductive and is selectively coupled to different voltage levels, thereby reducing leakage current in a channel to improve switch characteristic when the switch turns off.
Abstract:
The present invention provides a liquid crystal display device. The device includes a light guide plate, a color filter substrate, an array substrate and a light shading tape. Wherein, a side wall of the concave slot is an incline slope, an edge of the color filter substrate is supported on the incline slope of the concave slot, an edge of a plastic frame is aligned with an edge of the array substrate, and a light shading tape for relatively fixing the color filter substrate and the light guide plate. The present invention can realize a narrow frame and no frame design of the liquid crystal display device. The structure of the display panel is simplified in order to simplify the manufacturing process and reduce the production cost.
Abstract:
A bonding pad structure of liquid crystal display, having a plurality of bonding pads formed at part of the upper surface of the edge area of the substrate, and an overcoat layer with one side being inclined surface and positioned at the other part of upper surface of the bonding pad. The inclined surface is formed when patterning the overcoat layer covering the bonding pad by using the mask with gradient transmittance and removing the overcoat layer formed at part of the upper surface of the bonding pad. Also discloses a manufacturing method of the bonding pad structure of liquid crystal display.
Abstract:
The present invention proposes a TFT array substrate includes: a substrate; scan lines on the substrate; data lines intercrossing with the scan lines; a first insulating layer between the scan lines and the data lines; a second insulating layer on the first insulating layer and covering the data lines; a common electrode layer on the second insulating layer, comprising first holes located above the data lines. The first holes uncover the second insulating layer. The present invention decreases parasitic capacitance between the common electrode layer and data lines and between the common electrode layer and scan lines by decreasing overlaping sections between a common electrode layer and the data lines and between the common electrode layer and the scan lines. Therefore load of the data lines and the scan lines decreases, charge efficiency of the pixels increases, and display effect of an LCD panel is therefore improved.
Abstract:
A fanout line structure of an array substrate includes first fanout lines arranged on a fanout area of the array substrate, and second fanout lines arranged on the fanout area of the array substrate. A second conducting film is arranged at a bottom of the second fanout line, a second capacitor is formed between the second conducting film and a first conducting film of the second fanout line, the second capacitor is used to reduce an impedance difference between the fanout lines. Capacitance value of the second capacitor is dependent on an overlapping area between the second conducting film and the first conducting film.
Abstract:
A fanout line structure of an array substrate includes a plurality of fanout lines arranged on a fanout area of the array substrate, where resistance value of the fanout line is dependent on length of the fanout line. Each of the fanout lines comprises a first conducting film. Resistance values of a first part of fanout lines are less than resistance values of a second part of the fanout lines, and the first part of fanout lines are covered by an additional conducting film. In the fanout lines covered by the additional conducting film, as the resistance value of the fanout line, increases, area of the additional conducting film covering the fanout line correspondingly decreases. An additional capacitor is generated between the additional conducting film and the first conducting film.