摘要:
Flame retardant, thermoplastic molding compositions of high electroconductivity comprising between about 2% and about 45% by weight of finely divided conductive carbon black particles substantially uniformly dispersed within a cementitious matrix having a chlorine content of at least about 24% by weight and composed predominantly of substantially thermoplastic resins not substantially less than half of which by weight are vinyl chloride polymers which have a vinyl chloride content of at least about 70% by weight and K-values between about 45 and about 70, and wherein said cementitious matrix also contains from about 1% to about 15% by weight of a well balanced lubricant/stabilizer combination comprising lubricants which are solid at temperatures up to at least about 50.degree. C., together with effective stabilizers, are disclosed.
摘要:
Methods of fabricating a polymeric implantable device, such as a stent, with improved fracture toughness through annealing a polymer construct below the glass transition temperature of the polymer of the construct prior to a deformation step are disclosed herein. The deformation of the construct induces crystallization in the polymer construct through strain-induced crystallization. The annealing of the polymer construct accelerates the crystallization induced during the deformation and results in an increase in crystallite density with smaller crystallites as compared to deformation of a tube that has not been annealed. A stent scaffolding is then made from the deformed tube.
摘要:
Methods are disclosed for controlling the morphology and the release-rate of active agent from a coating layer for medical devices comprising a polymer matrix and one or more active agents. The methods comprise exposing a wet or dry coating to a freeze-thaw cycle. The coating layer can be used for controlled delivery of an active agent or a combination of active agents.
摘要:
An implantable drug delivery medical device with alternating hydrophilic and amphiphilic polymer layers and methods of using for the treatment of vascular disease are disclosed.
摘要:
Methods of fabricating a low crystallinity polymer tube for polymers subject to strain-induced crystallization. The low crystallinity tube may be further processed to make an implantable medical device.
摘要:
This invention provides rate controlling membranes for controlled drug delivery devices that are stable over time and exhibit more predictable and consistent membrane functionality. According to another aspect, the membranes have enhanced permeability. According to the invention, the rate controlling membrane of a controlled drug delivery device is subjected to a pre-treatment annealing process wherein it is subjected to an elevated temperature for a predetermined time period and subsequently cooled to ambient conditions before incorporation into a controlled drug delivery device.
摘要:
An iontophoretic delivery device (10) is provided. Device (10) has an electronic circuit (32) having electronic components such as batteries (30) mounted thereon. Device (10) also includes a pair of electrode assemblies (18, 19). The electronic circuit (32) is electrically connected to the electrode assemblies (18, 19) using an electrically conductive adhesive (34). The adhesive can also be used to electrically connect two or more electronic components within circuit (32) or to connect an electronic component to the electronic circuit (32). In one practice of the invention, the electrically conductive adhesive (44) functions as an electrode and electrically connects the circuit (32) to an agent-containing reservoir (24, 25). In a further practice of the invention, the electrically conductive adhesive (93) functions as an agent reservoir and contains the agent to be iontophoretically delivered.
摘要:
Provided herein re a composition and a coating or a device (e.g., absorbable stent) that includes a PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid biocompatible polymer and the methods of use thereof.
摘要:
A therapeutic agent delivery system formed of a specific type of poly(ester amide) (PEA), a therapeutic agent, and a water miscible solvent is described herein. A method of delivering the therapeutic agent delivery system by delivering the therapeutic agent delivery system formed of a PEA polymer, a therapeutic agent, and a water miscible solvent to a physiological environment and separating the phase of the therapeutic agent delivery system to form a membrane from the polymer to contain the therapeutic agent within the physiological environment is also described. Additionally disclosed is a kit including a syringe and a therapeutic agent delivery system within the syringe.