Abstract:
Individual first ones of a plurality of non-volatile logic element arrays are designated to restore first in response to entering a wakeup or restoration mode. These non-volatile logic element arrays include instructions for an order in which other non-volatile logic element arrays are to be restored next. So configured, the processing device can be set to have one or more NVL arrays restored first, which arrays are pre-configured to guide further wakeup of the device through directed restoration from particular NVL arrays. Certain NVL arrays can be skipped if the functions stored therein are not needed, and the order of restoration of others can be tailored to a particular wakeup time and power concern through restoration in parallel, serial, or combinations thereof.
Abstract:
A processing device includes a plurality of non-volatile logic element array domains having two or more non-volatile logic element arrays to store 2006 a machine state of the processing device stored in a plurality of volatile store elements. Configuration bits are read to direct which non-volatile logic element array domains are enabled first and to direct an order in which the first enabled non-volatile logic element array domains are restored or backed up in response to entering a wakeup or backup mode. Configuration bits can be read to direct an order of and a parallelism of how individual non-volatile logic element arrays in a first enabled non-volatile logic element array domain are restored or backed up. The order of restoration or backing up can be controlled by instructions from non-volatile arrays of the first enabled of the plurality of non-volatile logic element array domains.
Abstract:
Ferroelectric capacitor structures for integrated decoupling capacitors and the like. The ferroelectric capacitor structure includes two or more ferroelectric capacitors connected in series with one another between voltage nodes. The series connection of the ferroelectric capacitors reduces the applied voltage across each, enabling the use of rough ferroelectric dielectric material, such as PZT deposited by MOCVD. Matched construction of the series-connected capacitors, as well as uniform polarity of the applied voltage across each, is beneficial in reducing the maximum voltage across any one of the capacitors, reducing the vulnerability to dielectric breakdown.
Abstract:
In an embodiment of the invention, a dual-port negative level sensitive data retention latch contains a clocked inverter and a dual-port latch. Data is clocked through the clocked inverter when clock signal CKT goes high, CLKZ goes low and retention control signal RET is low. The dual-port latch is configured to receive the output of the clocked inverter, a second data bit D2, the clock signals CKT and CLN, the retain control signals RET and the control signals SS and SSN. The signals CKT, CLKZ, RET, SS and SSN determine whether the output of the clocked inverter or the second data bit D2 is latched in the dual-port latch. Control signal RET determines when data is stored in the dual-port latch during retention mode.
Abstract:
A system on chip (SoC) provides a memory array of nonvolatile bitcells. Each bit cell includes two ferroelectric capacitors connected in series between a first plate line and a second plate line, such that a node Q is formed between the two ferroelectric capacitors. The first plate line and the second plate line are configured to provide a voltage approximately equal to first voltage while the bit cell is not being accessed. A clamping circuit is coupled to the node Q and is operable to clamp the node Q to a voltage approximately equal to first voltage while the bit cell is not being accessed.
Abstract:
A system on chip (SoC) provides a nonvolatile memory array that is configured as n rows by m columns of bit cells. Each of the bit cells is configured to store a bit of data. There are m bit lines each coupled to a corresponding one of the m columns of bit cells. There are m write drivers each coupled to a corresponding one of the m bit lines, wherein the m drivers each comprise a write one circuit and a write zero circuit. The m drivers are operable to write all ones into a row of bit cells in response to a first control signal coupled to the write one circuits and to write all zeros into a row of bit cells in response to a second control signal coupled to the write zero circuits.
Abstract:
Individual first ones of a plurality of non-volatile logic element arrays are designated to restore first in response to entering a wakeup or restoration mode. These non-volatile logic element arrays include instructions for an order in which other non-volatile logic element arrays are to be restored next. So configured, the processing device can be set to have one or more NVL arrays restored first, which arrays are pre-configured to guide further wakeup of the device through directed restoration from particular NVL arrays. Certain NVL arrays can be skipped if the functions stored therein are not needed, and the order of restoration of others can be tailored to a particular wakeup time and power concern through restoration in parallel, serial, or combinations thereof.
Abstract:
A processing device is operated using a plurality of volatile storage elements. Data in the plurality of volatile storage elements is stored in a plurality of non-volatile logic element arrays. A primary logic circuit portion of individual ones of the plurality of volatile storage elements is powered by a first power domain, and a slave stage circuit portion of individual ones of the plurality of volatile storage elements is powered by a second power domain. During a write back of data from the plurality of non-volatile logic element arrays to the plurality of volatile storage elements, the first power domain is powered down and the second power domain is maintained. In a further approach, the plurality of non-volatile logic element arrays is powered by a third power domain, which is powered down during regular operation of the processing device.
Abstract:
A processing device is operated using a plurality of volatile storage elements. N groups of M volatile storage elements of the plurality of volatile storage elements per group are connected to an N by M size non-volatile logic element array of a plurality of non-volatile logic element arrays using a multiplexer. The multiplexer connects one of the N groups to the N by M size non-volatile logic element array to store data from the M volatile storage elements into a row of the N by M size non-volatile logic element array at one time or to write data to the M volatile storage elements from a row of the N by M size non-volatile logic element array at one time. A corresponding non-volatile logic controller controls the multiplexer operation with respect to the connections between volatile storage elements and non-volatile storage elements.
Abstract:
Ferroelectric capacitor structures for integrated decoupling capacitors and the like. The ferroelectric capacitor structure includes two or more ferroelectric capacitors connected in series with one another between voltage nodes. The series connection of the ferroelectric capacitors reduces the applied voltage across each, enabling the use of rough ferroelectric dielectric material, such as PZT deposited by MOCVD. Matched construction of the series-connected capacitors, as well as uniform polarity of the applied voltage across each, is beneficial in reducing the maximum voltage across any one of the capacitors, reducing the vulnerability to dielectric breakdown.