Abstract:
A method for forming a semiconductor device structure is provided. The method includes forming a first mask layer over a dielectric layer. The method includes forming a second mask layer over a first top surface of the first mask layer, the inner wall, and the bottom surface. The method includes removing the second mask layer covering the bottom surface to form a second trench in the second mask layer. The method includes forming an anti-bombardment layer over a second top surface of the second mask layer. The second mask layer and the anti-bombardment layer are made of different materials. The method includes removing the first portion, the first mask layer, the second mask layer, and the anti-bombardment layer to form a third trench in the dielectric layer. The method includes forming a conductive structure in the third trench.
Abstract:
The present disclosure describes an exemplary asymmetric CPP layout for a semiconductor structure with a different gate pitch over the source and the drain regions to mitigate gate-to-gate parasitic capacitances over the drain region, thus improving cutoff frequency. For example, the semiconductor structure can include a fin on a substrate. The semiconductor structure can also include first and second gate structures formed on the fin and separated by a first space. The semiconductor structure can also include a third gate structure formed on the fin between the first and the second gate structures. The third gate structure can be separated from the first gate structure by a second pitch and separated from the second gate structure by a third pitch that is greater than the second pitch. The semiconductor structure further includes a source region formed between the first and third gate structures, and a drain region formed between the third and the second gate structures.
Abstract:
An image sensor device is provided. The image sensor device includes a semiconductor substrate and a light sensing region in the semiconductor substrate. The image sensor device also includes a dielectric layer over the semiconductor substrate. The image sensor device further includes a filter partially surrounded by the dielectric layer. The filter has a protruding portion protruding from a bottom surface of the dielectric layer. In addition, the image sensor device includes a shielding layer between the dielectric layer and the semiconductor substrate and surrounding the protruding portion of the filter.
Abstract:
A method for forming a semiconductor device structure is provided. The method includes forming a metal gate stack over a semiconductor substrate. The method also includes performing a hydrogen-containing plasma treatment on the metal gate stack to modify a surface of the metal gate stack. The hydrogen-containing plasma treatment includes exciting a gas mixture including a first hydrogen-containing gas and a second hydrogen-containing gas to generate a hydrogen-containing plasma.
Abstract:
Embodiments of the disclosure provide an image sensor device. The image sensor device includes a semiconductor substrate. The semiconductor substrate has a front surface, a back surface opposite to the front surface, a light-sensing region close to the front surface, and a trench adjacent to the light-sensing region. The image sensor device includes a reflective layer positioned on an inner wall of the trench, wherein the reflective layer has a light reflectivity ranging from about 70% to about 100%.
Abstract:
A backside illuminated image sensor device with a shielding layer and a manufacturing method thereof are provided. In the backside illuminated image senor device, a patterned conductive shielding layer is formed on a dielectric layer on a backside surface of a semiconductor substrate and surrounding a pixel array on a front side surface of the semiconductor substrate.
Abstract:
A semiconductor wafer having a plurality of chip die areas arranged on a wafer in an array, each chip die area including a seal ring area with one or more first sets of polygonal structures. The wafer further comprises scribe line areas between the chip die areas, the scribe line areas including one or more second sets of polygonal structures. The presence of proximate polygonal structures between the scribe line and seal ring areas balance stresses between the chip die areas during wafer dicing operation.