Increasing Source/Drain Dopant Concentration to Reduced Resistance

    公开(公告)号:US20210057552A1

    公开(公告)日:2021-02-25

    申请号:US17092838

    申请日:2020-11-09

    Abstract: A method includes recessing a semiconductor fin to form a recess, wherein the semiconductor fin protrudes higher than isolation regions on opposite sides of the semiconductor fin, and performing a first epitaxy to grow a first epitaxy layer extending into the recess. The first epitaxy is performed using a first process gas comprising a silicon-containing gas, silane, and a phosphorous-containing gas. The first epitaxy layer has a first phosphorous atomic percentage. The method further includes performing a second epitaxy to grow a second epitaxy layer extending into the recess and over the first epitaxy layer. The second epitaxy is performed using a second process gas comprising the silicon-containing gas, silane, and the phosphorous-containing gas. The second epitaxy layer has a second phosphorous atomic percentage higher than the first phosphorous atomic percentage.

    Structure and Method for Semiconductor Device

    公开(公告)号:US20200075597A1

    公开(公告)日:2020-03-05

    申请号:US16669595

    申请日:2019-10-31

    Abstract: A semiconductor device includes a substrate; an isolation structure over the substrate; two first fins in an N-type region of the semiconductor device; and two second fins in a P-type region of the semiconductor device. Each of the two first fins has a channel region and two source/drain (S/D) regions sandwiching the channel region. The semiconductor device further includes a gate stack engaging the channel regions of the two first fins; and four S/D features over the S/D regions of the two first fins. Each of the four S/D features includes a lower portion and an upper portion over the lower portion. Each of the lower portions of the four S/D features has a cross-sectional profile that is wider at its bottom than at its top. The upper portions of the four S/D features merge into two merged S/D features with one on each side of the gate stack.

    Epitaxial growth methods and structures thereof

    公开(公告)号:US10453925B2

    公开(公告)日:2019-10-22

    申请号:US15089153

    申请日:2016-04-01

    Abstract: A method and structure for providing a two-step defect reduction bake, followed by a high-temperature epitaxial layer growth. In various embodiments, a semiconductor wafer is loaded into a processing chamber. While the semiconductor wafer is loaded within the processing chamber, a first pre-epitaxial layer deposition baking process is performed at a first pressure and first temperature. In some cases, after the first pre-epitaxial layer deposition baking process, a second pre-epitaxial layer deposition baking process is then performed at a second pressure and second temperature. In some embodiments, the second pressure is different than the first pressure. By way of example, after the second pre-epitaxial layer deposition baking process and while at a growth temperature, a precursor gas may then be introduced into the processing chamber to deposit an epitaxial layer over the semiconductor wafer.

    Semiconductor device and manufacturing method thereof

    公开(公告)号:US10164096B2

    公开(公告)日:2018-12-25

    申请号:US14833022

    申请日:2015-08-21

    Abstract: A fin field effect transistor (Fin FET) device includes a fin structure extending in a first direction and protruding from an isolation insulating layer disposed over a substrate. The fin structure includes a well layer, an oxide layer disposed over the well layer and a channel layer disposed over the oxide layer. The Fin FET device includes a gate structure covering a portion of the fin structure and extending in a second direction perpendicular to the first direction. The Fin FET device includes a source and a drain. Each of the source and drain includes a stressor layer disposed in recessed portions formed in the fin structure. The stressor layer extends above the recessed portions and applies a stress to a channel layer of the fin structure under the gate structure. The Fin FET device includes a dielectric layer formed in contact with the oxide layer and the stressor layer in the recessed portions.

Patent Agency Ranking