Abstract:
A method of making an indexed prepreg composite sheet is disclosed. The method comprises forming discrete regions in a resin film layer. The discrete regions are arranged in an indexing pattern. The method also includes forming a precursor prepreg composite sheet by impregnating a fiber reinforcement with the resin film layer having a viscosity. The discrete regions of the resin film layer form non-impregnated regions of the precursor prepreg composite sheet. The method additionally includes replacing the non-impregnated regions of the precursor prepreg composite sheet with indexing openings.
Abstract:
Composite materials having carbon reinforcement fibers impregnated with a matrix material are augmented with functionalized graphene nanoplatelets having amine groups formed on a surface of the graphene nanoplatelets and epoxide groups formed on at least one edge of the graphene nanoplatelets as a supplement to or a replacement for resin matrix material to increase strength of the composite materials. Related methods of increasing strength of composite materials include mixing the functionalized graphene nanoplatelets into the matrix material prior to impregnating the carbon reinforcement fibers, depositing the functionalized graphene nanoplatelets onto the matrix material to form an interlayer, and depositing the functionalized graphene nanoplatelets onto a bed of carbon reinforcement fibers with no resin matrix material. The composite materials and related methods for increasing strength of composite materials may include graphene nanoplatelets having holes formed through the graphene nanoplatelets.
Abstract:
A layered composite assembly may include a plurality of composite fiber layers stacked onto one another. Each of the plurality of composite fiber layers may include a main body including a plurality of composite fibers. The main body may be pre-impregnated with at least one resin. Each composite fiber layer also includes a plurality of layer-securing pins secured to the main body. The layer-securing pins are configured to mechanically connect the main body to an adjacent composite fiber layer.
Abstract:
A fabricated substrate has at least one plurality of posts. The plurality is fabricated such that the two posts are located at a predetermined distance from one another. The substrate is exposed to a fluid matrix containing functionalized carbon nanotubes. The functionalized carbon nanotubes preferentially adhere to the plurality of posts rather than the remainder of the substrate. A connection between posts of the at least one plurality of posts is induced by adhering one end of the functionalized nanotube to one post and a second end of the functionalized carbon nanotube to a second post.
Abstract:
A method and apparatus for manufacturing a carbon fiber. Pressure is applied to a filament to change a cross-sectional shape of the filament and create a plurality of distinct surfaces on the filament. The filament is converted into a graphitic carbon fiber having the plurality of distinct surfaces. A plurality of sizings is applied to the plurality of distinct surfaces of the graphitic carbon fiber in which the plurality of sizings includes at least two different sizings.
Abstract:
There is provided an automated lamination system for embedding printed electronic element(s) in a composite structure. The automated lamination system includes a supply of composite prepreg material, a layup tool assembly, and a modified automated lamination apparatus laying up layer(s) of the composite prepreg material on the layup tool assembly, to form the composite structure. The modified automated lamination apparatus includes a section preparation pre-printing apparatus preparing section(s) on a top surface of a top layer of the layer(s), to obtain prepared section(s), and includes a non-contact direct write printing apparatus mechanically coupled to the section preparation pre-printing apparatus, and includes one or more supplies of electronic element materials, printed with the non-contact direct write printing apparatus, on each of the prepared section(s), to obtain the printed electronic element(s), that are embedded in the composite structure. The automated lamination system further includes a control system and a power system.
Abstract:
Composite laminate parts are made using a gradient cured subset of fiber reinforced thermoset resin plies. A portion of the subset is cured to rigidity to thereby maintain the shape of a part layup, while other plies in the subset are actively cooled to prevent them from curing. Additional plies are laid up on the uncured plies of the subset to complete the layup. The completed layup is then fully cured.
Abstract:
A composite structure forming system configured to form a contoured elongate composite structure in a continuous process is presented. The composite structure forming system comprises a plurality of charge forming stations and a plurality of conveyor systems. The plurality of charge forming stations is configured to operate in parallel, each charge forming station of the plurality of charge forming stations is configured to form a respective composite charge of the contoured elongate composite structure. Each conveyor system of the plurality of conveyor systems is configured to transport a respective composite charge through a respective charge forming station.
Abstract:
Methods, systems, and apparatuses are disclosed for the selective and controlled removal of debris from specific areas of a substrate outer surface without adversely impacting the substrate outer surface, including substrate outer surface coatings, and returning an actual substrate outer surface profile containing affixed debris to a predetermined substrate outer surface profile by comparing a library of predetermined profiles to an actual substrate outer surface profile in real time.
Abstract:
Systems and methods are provided for ultrasonic image generation. One embodiment is a method that includes capturing a first ultrasound image that represents a first volume within a part, and capturing a second ultrasound image that represents a second volume that partially overlaps the first volume. The method also includes identifying a first constellation comprising at least three inconsistencies in the part that are depicted in the first ultrasound image, identifying a second constellation, comprising a reoriented version of the first constellation, in the second ultrasound image, and generating an aggregate image that combines the first ultrasound image with the second ultrasound image.