Abstract:
A low-current pogo probe card for measuring currents down to the femtoamp region includes a laminate board having a layer of conductive traces interposed between two dielectric layers. A plurality of probing devices, such as ceramic blades, are edge-mounted about a central opening so that the probing needles or needles included therein terminate below the opening in a pattern suitable for probing a test subject workpiece. A plurality of pogo pin receiving pad sets, each including a guard pad, occupy the periphery of the board. Each guard pad is electrically connected to a trace from the layer of conductive traces. The pad sets may be connected to the probing devices by low noise cables or traces. Air trenches separate the pad sets for reducing cross talk and signal settling times.
Abstract:
A method of constructing a probe which includes providing a substrate and creating a first substantially asymmetrical recess within the substrate. A conductive material is located within the recess and a conductive trace is electrically connected with the conductive material. A membrane supports the conductive trace, wherein the conductive material is located between the membrane and the substrate. The substrate is removed from the conductive material.
Abstract:
A cable includes an inner conductor, an inner dielectric, and a guard conductor, where the inner dielectric is between the inner conductor and the guard conductor. The cable also includes an outer dielectric, and a shield conductor, where the outer dielectric is between the guard conductor and the shield conductor. The cable further includes an additional layer of material between the outer dielectric and the shield conductor of suitable composition for reducing triboelectric current generation between the outer dielectric and the shield conductor to less than that which would occur were the outer dielectric and the shield conductor to directly adjoin each other.
Abstract:
A probe station for probing a test device has a chuck element for supporting the test device. An electrically conductive outer shield enclosure at least partially encloses such chuck element to provide EMI shielding therefor. An electrically conductive inner shield enclosure is interposed between and insulated from the outer shield enclosure and the chuck element, and at least partially encloses the chuck element.
Abstract:
An interconnect assembly for evaluating a probe measurement network includes a base, respective inner and outer probing areas in mutually coplanar relationship on the upper face of the base, a reference junction, and a high-frequency transmission structure connecting the probing areas and the reference junction so that high-frequency signals can be uniformly transferred therebetween despite, for example, variable positioning of the device-probing ends of the network on the probing areas. A preferred method for evaluating the signal channels of the network includes connecting a reference unit to the reference junction and successively positioning each device-probing end that corresponds to a signal channel of interest on the inner probing area. Because the transmission structure uniformly transfers signals, the relative condition of the signals as they enter or leave each end will substantially match the condition of the signals as measured or presented by the reference unit, thereby enabling calibration of the network in reference to the device-probing ends. The assembly is particularly well-adapted for the evaluation of probe measurement networks of the type used for testing planar microelectronic devices.
Abstract:
A low-current pogo probe card for measuring currents down to the femtoamp region includes a laminate board having a layer of conductive traces interposed between two dielectric layers. A plurality of probing devices, such as ceramic blades, are edge-mounted about a central opening so that the probing needles or needles included therein terminate below the opening in a pattern suitable for probing a test subject workpiece. A plurality of pogo pin receiving pad sets, each including a guard pad, occupy the periphery of the board. Each guard pad is electrically connected to a trace from the layer of conductive traces. The pad sets may be connected to the probing devices by low noise cables or traces. Air trenches separate the pad sets for reducing cross talk and signal settling times.
Abstract:
A probe station suitable for low noise measurements includes a chuck for supporting a test device and a supporting surface for the test device. The probe station has means for controlling the temperature in the vicinity of the test device by sensing the temperature and, in response to the sensing, alternatively raising or lowering the temperature. At least two layers including a first electrically conductive layer adhered to an insulator layer are disposed between the supporting surface and the chuck. The electrically conductive layer is electrically connected to one of the chuck and supporting surface.
Abstract:
A probe suitable for low-loss microwave frequency operation has a tip assembly including a semi-rigid coaxial cable having a Teflon.TM. dielectric for temperature stability and a freely-suspended end. On this end a semicylindrical recess is formed defining a shelf along which an inner finger and outer pair of fingers are mounted, each made of resilient conductive material, so as to form a coplanar transmission line. Cantilevered portions of the fingers extend past the end of the cable to form an air-dielectric transmission path of uniform and stable characteristic despite exposure to numerous contact cycles and to provide suitable means for probing nonplanar device pads while also offering good visibility of device pads generally. Corresponding sections of the cantilevered portions are equivalently configured in terms of material composition, cross-sectional geometry and spatial orientation to provide a uniform deflection characteristic relative to each finger for even wearing of the pads and fingers and for stability of transmission characteristic despite contact pressure variation. A rearwardly-inclining end face on each finger reflects dark background shading to cause a dark line to form on each extreme finger end in sharp contrast to the device pads thus facilitating finger visibility. The fingers are originally formed in one-piece and are joined by a carrier strip which is trimmed off after the fingers are connected to the cable so that their transverse spacing is precisely determined.
Abstract:
A probe station includes a fully guarded chuck assembly and connector mechanism for increasing sensitivity to low-level currents while reducing settling times. The chuck assembly includes a wafer-supporting first chuck element surrounded by a second chuck element having a lower component, skirting component and upper component each with a surface portion extending opposite the first element for guarding thereof. The connector mechanism is so connected to the second chuck element as to enable, during low-level current measurements, the potential on each component to follow that on the first chuck element as measured relative to an outer shielding enclosure surrounding each element. Leakage current from the first chuck element is thus reduced to virtually zero, hence enabling increased current sensitivity, and the reduced capacitance thus provided by the second chuck element decreases charging periods, hence reducing settling times. With similar operation and effect, where any signal line element of the connector mechanism is arranged exterior of its corresponding guard line element, such as adjacent the chuck assembly or on the probe-holding assembly, a guard enclosure is provided to surround and fully guard such signal line element in interposed relationship between that element and the outer shielding enclosure.
Abstract:
A probe station is equipped with an integrated guarding system which facilitates the use of the station for low-current measurements, as well as integrated Kelvin connections to eliminate voltage losses caused by line resistances. The station has a chuck assembly which consists of at least three chuck assembly elements. A first element supports the test device, while an underlying second element acts as a guard to reduce leakage currents. These elements are electrically insulated from each other and from their underlying supporting structure, which is the third element. Ready-to-use, selectively detachable electrical connector assemblies provide for signal and guard connections to the first and second chuck assembly elements, respectively, as well as providing Kelvin connections thereto. The capacitance between the respective chuck assembly elements is extremely low due to the provision of air space as the primary electrical insulator. Unique electrical connectors for individually-positionable probes provide both guarding and Kelvin connection capability together with separate EMI shielding movable in unison with each probe individually.