Abstract:
A power supply apparatus includes a case, a circuit board, at least one heating element, and at least one internal liquid cooling heat-dissipation structure. The heating element is disposed in the case and electrically connected to the circuit board. The internal liquid cooling heat-dissipation structure is disposed in the case and located in at least one of manners which include being located between the case and the circuit board and being located between the case and the heating element. The internal liquid cooling heat-dissipation structure includes a tank and a heat conducting sheet. The tank includes an internal pipe. A working fluid is adapted to be filled in the internal pipe. The heat conducting sheet is assembled to the tank. The heat generated by the heat element is transmitted to the tank through the heat conducting sheet and dissipated by the working fluid circulating in the internal pipe.
Abstract:
An apparatus and a method for power supply are provided. The apparatus for power supply includes a main power circuit, an auxiliary power circuit and a power switching control circuit. The main power circuit is configured to generate a main power suitable to be provided to a first load and a second load for use. The auxiliary power circuit is configured to generate an auxiliary power suitable to be provided to the second load for use. The power switching control circuit is configured to detect a voltage difference between the main power and the auxiliary power and determine whether the apparatus meets a normal power supply condition, so as to select one of the main power and auxiliary power as a power source of the second load.
Abstract:
The invention provides a control circuit of a switch device. A single output pin of the control unit outputs an enable signal to control terminals of two switch units to control an on-state of the two switch units, and adjust a current size of a control current of the on-state of the switch device. One of the switch units after receiving the enable signal for a predetermined time is switched to an off-state, so as to reduce power consumption of the switch device.
Abstract:
An inverter apparatus includes a direct current to direct current converter (DC/DC converter), a direct current to alternating current converter (DC/AC converter), a primary-side control circuit and a secondary-side control circuit. The DC/DC converter is arranged for outputting a first DC power and a second DC power. The DC/AC converter is coupled to the DC/DC converter, and is arranged for receiving the first DC power. The primary-side control circuit is coupled to the DC/DC converter, and is arranged for controlling an operation of the DC/DC converter. The secondary-side control circuit is coupled to the DC/DC converter and the DC/AC converter, and is arranged for receiving the second DC power, and controlling an operation of the DC/AC converter according to the second DC power.
Abstract:
A snubber circuit includes a capacitor and a buffer device. The buffer device has a first terminal and a second terminal. The first terminal is electrically connected to the capacitor. When the buffer device operates in a first conduction mode, a charge current flows from the second terminal to the first terminal through the buffer device. When the buffer device switches from the first conduction mode to a second conduction mode, the buffer device generates a discharge current which flows from the first terminal to the second terminal through the buffer device over a specific period of time, such that after the buffer device enters the second conduction mode, a relative maximum voltage level appearing first at the second terminal is lower than a voltage level at the first terminal.
Abstract:
A power supply apparatus is provided, and which includes a power conversion circuit, a control chip with soft-start function and a short protection circuit. The power conversion circuit is configured to provide a DC output voltage to a load in response to an output pulse-width-modulation (PWM) signal. The control chip is operated under a DC input voltage, and configured to generate the output PWM signal to control the operation of the power conversion circuit. The short protection circuit is configured to pull-down the level of a soft-start pin of the control chip, so as to substantially/significantly reduce the frequency and duty cycle of the output PWM signal, and then substantially/significantly reduce the current flowing through the shorted load.
Abstract:
An apparatus and a method for power supply are provided. In the invention, the residual standby power can be quickly discharged by an additional fast discharging unit within a predetermined time when an external AC power (for example, city power) received by the power supply apparatus capable of supporting ATX (Advanced Technology eXtended) specification is unavailable (for example, power trip). Accordingly, any host system applied with the inventive power supply apparatus and method would not be inoperable when the received external AC power (city power) is recovered, and thus effectively promoting the stability of the applied host system.
Abstract:
A power conversion apparatus, including a transformer, a switch, an analog controller, a digital controller, and a voltage converter-based feedback circuit, is provided. The primary side of the transformer is coupled to an input voltage, and the secondary side of the transformer is coupled to an output voltage provided to a load. The switch intermittently transmits the input voltage to the primary side of the transformer. The analog controller is disposed at one of the primary side and the secondary side of the transformer and configured to control the operation of the switch in response to an analog feedback signal. The digital controller is disposed at the other one of the primary side and the secondary side and configured to generate a digital feedback signal. The voltage converter-based feedback circuit is configured to convert the digital feedback signal to the analog feedback signal based on a voltage conversion characteristic thereof.
Abstract:
A power supply device including a casing and a power supply module is provided. The casing has an opening. The power supply module includes a frame, a pin base, a plurality of pins and a printed circuit board. The frame is detachably disposed in the casing. The pin base is fixed at the frame and is exposed by the opening. The pins are fixed at the pin base, and first ends of the pins are exposed in the opening. The printed circuit board is disposed in the casing and is electrically connected to second ends of the pins.
Abstract:
An LED power supply device is provided. In the invention, a digital control device and a programmable interface are used to set an output specification of the LED power supply device, such that one smart LED power supply device can be used to supply power to the LED lamps of different specifications. In this way, it is unnecessary to specifically design and test the power supply devices for the LED lamps of different specifications, so that a design and production cycle of the LED power supply devices and costs thereof are greatly reduced. On the other hand, usage of the digital control device avails monitoring and controlling a state of the LED lamp, for example, implementing temperature control, time control, color and luminance control, etc., by which a service life, efficiency and flexibility of the LED lamp are enhanced.