Abstract:
A high-pass filter includes at least one circuit unit constituted by a first branch and a second branch both connected to an input of the filter on one side and, on the other side, to an adder the output of which is the output of the filter. The first branch includes means for transferring an input signal substantially without modifying its frequency content, and the second branch comprises a low-pass filter. The circuit elements are chosen such that the components of the input signal with frequencies below the cut-off frequency of the low-pass filter are substantially cancelled out at the output of the adder. The filter is suitable for being produced within a particularly small area in an integrated circuit.
Abstract:
A timed bistable circuit is described which includes two inverters each having its input connected to the output of the other, an output of the circuit via a "buffer" and an input of the circuit via a controlled electronic switch. The supply terminals of the inverters are connected to the supply terminals of the circuit via another two controlled switches. A clock generator provides timing signals to control both the input switches to open or close and to control the supply switches to close or open when the input switches are open or closed respectively. To obtain a latch usable in a comparator at a high comparison frequency the offset referred to the input is reduced and made independent of the frequency by arranging two further electronic switches between the supply terminals of the inverters and the supply terminals which are controlled by a timing signal in such a way as to close with a predetermined delay with respect to the closure of the input switches and to open when input switches open.
Abstract:
A device includes a first line at the supply voltage; a second line at the boost voltage; a booster stage; a supply detecting stage connected to the first line and generating a first level signal when the supply voltage exceeds a first predetermined level; a boost detecting stage connected to the second line and generating a second level signal when the boost voltage exceeds a second predetermined level; a regulating stage enabled by the boost detecting stage; and a pump control stage, which generates a regulating enabling signal for the regulating stage in the absence of the first level signal and in the presence of an enabling signal enabling the boost condition. The regulating stage generates a regulating signal in the presence of the second level signal and the regulating enabling signal, when the boost voltage exceeds a third predetermined level; and the pump control stage generates a pump activating signal for the booster stage in the absence of the first level signal and the regulating signal.
Abstract:
A circuit having a double half-wave rectifier connected to the outputs of a differential amplifier in order to produce two quantities dependent on the amplitudes of the half-waves of the output signal of the amplifier. Two comparators each having an input are connected to an output of the rectifier and a reference input in order to produce respective output signals when the amplitudes of the respective half-waves are greater than the levels applied to the reference inputs. The circuit also has processing means for generating a signal for regulating the gain of the amplifier in dependence on the durations of the output signals of the two comparators. The circuit may advantageously be used when the signal to be amplified is not symmetrical.
Abstract:
A multiplier presenting four multiplying branches, each formed by a buffer transistor and by two input transistors arranged in series to one another and connected between two output nodes and a common node. A biasing branch presents a diode-connected forcing transistor with its gate terminal connected to the gate terminal of all the buffer transistors, and its source terminal connected to the common node. The forcing transistor forces the input transistors to operate in the triode (linear) region, i.e., as voltage-controlled resistors, so that they conduct a current linearly proportional to the voltage drop between the respective source and gate terminals, and the currents through the output nodes are proportional to the input voltages applied to the control terminals of the input transistors. By cross-coupling the multiplying branches to the output nodes and subtracting the two output currents, a current is obtained which is proportional to the product of the two input voltages.
Abstract:
A fuzzy logic electronic controller whereby predetermined membership functions .mu.(x) of logic (X) variables are subjected to so-called inference operations configured essentially as IF-THEN rules with at least one front preposition and at least one rear implication. The controller is of a kind which includes an input or fuzzyfier section having a plurality of inputs for analog or digital signals, a central control unit or fuzzy controller core placed after said input section and being provided with memories, and an output section or defuzzyfier connected to the output of the central unit to convert the results of the inference operations back to analog or digital signals. The controller includes a plurality of fuzzyfiers being disposed in parallel within said input section and each connected to a pair of analog and digital inputs, a plurality of storage modules corresponding in number to said fuzzyfiers and containing data of the front prepositions only of said rules, a fuzzy controller inference unit active in the central control unit to carry out logic operations based on said inference rules of the fuzzy logic by extracting data from said memories through an interfacing circuit, and an additional memory coupled between the fuzzy controller inference unit and the defuzzyfier and adapted to contain data pertaining to the rear (THEN) implications only of said inference rules.
Abstract:
Switching distortion in a digitally controlled attenuator is effectively suppressed and soft-switching in passgate arrays, present at a certain point of a logic signal path, is implemented with a minimum number of additional components. The soft switching in passgate arrays is implemented by driving the control nodes of each passgate by an inverter, at least a current terminal of which is made switchable from the respective supply node to a node onto which an appropriate ramp signal toward the potential of the respective supply potential is produced by a suitable controlled ramp generator. The passgates for switching the current terminals of the inverters are controlled by the logic signal that preexisted the intervening switching on the respective signal line of the passgate, and by its inverse. The preexistent logic value is momentarily stored in a latch that is updated at the end of any new switching process. The switching distortion is suppressed by causing a fast turn-on of the selected switch and a slowed-down turn-off of the deselected switch and by connecting in parallel to the portion of the resistive voltage divider pertaining to the change of output tap a shunt resistance, deselected from the signal path downstream of the selected switch. The deselected switch is driven by a ramp of a preset slope. A circuit sensing the sign of the change of attenuation of the contingent command, configures a pair of switches that deselect the shunt resistance.
Abstract:
A method comprising the steps of depositing a first and second polysilicon layer, separated by an oxide layer; selectively etching the second polysilicon layer to form first gate regions; forming first substrate regions in the substrate and laterally in relation to the first gate regions; selectively etching the first polysilicon layer to form second gate regions of a length greater than the first gate regions; and forming in the substrate, laterally in relation to the second gate regions and partially overlapping the first substrate regions, second substrate regions of a higher doping level than the first substrate regions.
Abstract:
A method employing a test structure identical to the memory array whose gate oxide quality is to be determined, except for the fact that the cells are connected electrically parallel to one another. The test structure is so stressed electrically as to extract electrons from the floating gate of the defective-gate-oxide cells and so modify the characteristic of the cell while leaving the charge of the non-defective cells unchanged. In this way, only the threshold of the defective cells is altered. A sub-threshold voltage is then applied to the test structure, and the drain current through the cells, which is related to the presence of at least one defective cell in the structure, is measured. Measurement and analysis of the current-voltage characteristic provides for determining the number of defective cells. The method is suitable for in-line quality control of the gate oxide of EPROM, EEPROM and flash-EEPROM memories.
Abstract:
A process for doping a P-type substrate (50) by forming a layer (52) of silicon nitride, implanting N-type impurities through this layer (FIG. 7), forming a resist mask (54) which leaves at least one area of the substrate (FIG. 8) containing a part of the nitride layer exposed, implanting N-type impurities first with an insufficient energy and then with a sufficient energy to traverse the nitride layer, subjecting (FIG. 9) the substrate to a high temperature treatment in an oxidizing environment to form silicon dioxide pads (55) on the areas of the substrate not covered by the nitride layer, removing the nitride layer and performing an implantation of P-type impurities into the areas delimited by the pads. The process then continues with the removal of the pads and, in the conventional manner, with the formation of an epitaxial layer and selective doping of this to form P-type and N-type regions in it. The process described allows the production of integrated devices with an additional buried layer while utilizing one fewer mask than conventional processes.