Abstract:
A three-dimensional fibrin engineered tissue construct is provided selected from: (i) a fibrin gel matrix comprising a combination of tissue-specific cells and at least one type of vascular cells; and (ii) a hybrid scaffold of fibrin gel and a polymeric synthetic scaffold comprising at least one type of vascular cells or a combination of tissue-specific cells and at least one type of vascular cells.
Abstract:
Described herein are bioprinters comprising: one or more printer heads, wherein a printer head comprises a means for receiving and holding at least one cartridge, and wherein said cartridge comprises contents selected from one or more of: bio-ink and support material; a means for calibrating the position of at least one cartridge; and a means for dispensing the contents of at least one cartridge. Further described herein are methods for fabricating a tissue construct, comprising: a computer module receiving input of a visual representation of a desired tissue construct; a computer module generating a series of commands, wherein the commands are based on the visual representation and are readable by a bioprinter; a computer module providing the series of commands to a bioprinter; and the bioprinter depositing bio-ink and support material according to the commands to form a construct with a defined geometry.
Abstract:
A composition for repairing cartilage tissues includes a scaffold and a plurality of endothelial progenitor cells. The endothelial progenitor cells adhere on the scaffold. A method of making the composition for repairing cartilage tissue is also disclosed. This is advantageous for safely and quickly repairing cartilage tissues by using the composition and the manufacturing method thereof.
Abstract:
Bone cages are disclosed including devices for biocompatible implantation. The structures of bone are useful for providing living cells and tissues as well as biologically active molecules to subjects.
Abstract:
Bone cages are disclosed including devices for biocompatible implantation. The structures of bone are useful for providing living cells and tissues as well as biologically active molecules to subjects.
Abstract:
The present invention relates to a hybrid graft and methods of generating the hybrid graft. The hybrid graft comprises an exterior surface and a luminal surface. The luminal surface comprises a micropattern of grooves to which cells adhere and orient along. The exterior surface comprises electrospun microfibers wherein the microfibers provide mechanical properties to the graft. The hybrid graft is capable supporting endothelial cell attachment, endothelial cell alignment, cell proliferation, and maintaining their in vivo function. The graft of the invention can recapitulate the in vivo morphology and function of natural vascular endothelium.
Abstract:
Described is a scaffold that is strong enough to resist forces that exist inside a body, while possessing biocompatible surfaces. The scaffold is formed of a layer of mesh (e.g., Stainless Steel or Nitinol) that is tightly enclosed by a multi-layer biological matrix. The biological matrix can include three layers, such a first layer (smooth muscle cells) formed directly on the metal mesh, a second layer (fibroblast/myofibroblast cells) formed on the first layer, and a third layer (endothelial cells) formed on the second layer. The scaffold can be formed to operate as a variety of tissues, such as a heart valve or a vascular graft. For example, the mesh and corresponding biological matrix can be formed as leaflets, such that the scaffold is operable as a tissue heart valve.
Abstract:
The present invention relates to engineered blood vessels and methods of making such vessels using matrices comprising endothelial and smooth muscle cells, or cells capable of differentiating into endothelial and smooth muscle cell lineages (e.g., stem cells, or the progenitors thereof).
Abstract:
The first aspect of the present invention is directed to a method of producing a vascular network preform (VNP). This method involves forming a network of elongate fibers and at least one elongate structure from a sacrificial material. The diameter of the elongate structure is greater than that of the elongate fibers. The network of elongate fibers is placed in contact with at least one elongate structure either following or during forming the network of elongate fibers or forming the at least one elongate structure. A matrix is applied around the network of elongate fibers, in contact with the at least one elongate structure. The network of elongate fibers and elongate structure, within the matrix is sacrificed to form a preform. The resulting preform contains a vascular network of fine diameter tubes in contact with at least one elongate passage having a diameter greater than that of the fine diameter tubes. The resulting solid preform and methods of using it are also disclosed.
Abstract:
The invention makes available a keratin coating of a support substrate and a method for the production thereof. This keratin coating is suitable particularly for the in vitro or in vivo culturing of epithelial or endothelial cells and, because of its optical transparency, for microscopy. The keratin coating is prepared by applying or coating keratin in the form of nanoparticles from an aqueous keratin solution or keratin suspension. The solution or suspension does not contain any reducing compounds. The keratin solution is prepared preferably from hair, such as human hair. For the preparation of the coating, keratin is brought into solution or into a suspension of nanoparticles by mixing the keratin with an aqueous composition which contains thiourea, urea, and mercaptoethanol.