Abstract:
A seed for implanting radioactive material within the living body of a recipient which contains radioactive material which emits therapeutic radiation to treat a specific localized area of the recipient's body. A capsule, which sealingly encloses the radioactive material, preventing contact with the recipient's body fluid and tissue, includes a generally cylindrical body portion having a pair of open ends. End members of a wall thickness substantially that of the cylindrical body close the open ends, and include an end wall and a generally tubular skirt portion extending therefrom. The skirt portion and the ends of the cylindrical body are deformably joined together by welding, crimping, peening or other cold flow metal treatment, to form a hermetic seal between the end cap and cylindrical body. Also disclosed is a cylindrical plug-like coupling member which joins the pair of seeds in end-to-end coaxial relationship. Each end of the coupling member is received in a socket-like cavity formed in the hollow interior of one end member.
Abstract:
An injector for implanting materials comprising a hollow tubular sheath with a sharpened point suitable for injecting into human tissue and a slotted needle slidably and rotatably mounted inside said sheath, the sheath being retractable to expose any portion or all of the slotted needle, and the needle being rotatable within the sheath. This device is employed for implanting radioactive seeds in human tissue for treatment thereof.
Abstract:
A flexible or elastic brachytherapy strand that includes an imaging marker and/or a therapeutic, diagnostic or prophylactic agent such as a drug in a biocompatible carrier that can be delivered to a subject upon implantation into the subject through the bore of a brachytherapy implantation needle has been developed. Strands can be formed as chains or continuous arrays of seeds up to 50 centimeters or more, with or without spacer material, flaccid, rigid, or flexible.
Abstract:
A method of detecting migration of tumor cells is provided by implanting in a region of tumor cells one or more implants having a matrix material of a biocompatible and biodegradable polymer, and a plurality of nanoparticles dispersed within the matrix material and functionalized to bind tumor cells. Nanoparticles bound to the tumor cells that have migrated out of the region can be detected by various imaging modalities. The implant can be in the shape of a brachytherapy spacer or radiotherapy fiducial maker or can be a coating on a brachytherapy spacer or fiducial marker. A method of treating cancer is provided by implanting one or more brachytherapy spacers or fiducial markers including the matrix material and an anti-cancer therapeutic agent dispersed within the matrix material.
Abstract:
This disclosure provides design, material, preparation methods, and use alternatives for medical devices. An example stent includes an expandable framework and a plurality of tubular members disposed along the expandable framework. Each of the plurality of tubular members include a lumen extending therein. The example stent also include a coating, wherein the coating is applied directly to both the plurality of tubular members and the expandable framework.
Abstract:
A flexible or elastic brachytherapy strand that includes an imaging marker and/or a therapeutic, diagnostic or prophylactic agent such as a drug in a biocompatible carrier that can be delivered to a subject upon implantation into the subject through the bore of a brachytherapy implantation needle has been developed. Strands can be formed as chains or continuous arrays of seeds up to 50 centimeters or more, with or without spacer material, flaccid, rigid, or flexible.
Abstract:
A point-of-care seed stranding device for automating assembly of brachytherapy seed strands for implantation in patients. The device includes a number of features to reduce the potential for mistakes by the user, as well as to reduce the potential for damaging the radioactive seeds during the stranding process. Tactile feedback may be provided to prevent exertion of too much force in the packing step of the stranding process, as well as to indicate that the seed and/or strand cartridges are empty and need to be replaced. The device may also include a mechanism for holding seeds or spacers in place to allow automated packing of seeds or spacers having corresponding geometries. The device may also be provided with a seed counter which can be employed to preset the number of seeds in a strand and which disables the device from dispensing or packing additional seeds once the preset number of seeds has been packed into the strand. Also, methods for automated assembly of seed strands including the steps of setting the number of seeds, dispensing seeds and spacers, packing seeds and spacers and transferring assembled strands to another device.
Abstract:
A device is proposed for assembling chain components to a chain, wherein at least two chain components include radioactive radiation sources. The device includes a housing, a working channel which extends along a first axis of the housing, a loading unit connected to the working channel and having at least two receiving devices for chain component magazines, wherein at least one receiving device is configured to receive a radiation source magazine, as well as at least one means for ejecting the chain components received from the magazines, and an joining unit for joining chain components. The at least two receiving devices are positioned so that the magazines for chain components received therein are spaced along the first axis and positioned vertically above the working channel.
Abstract:
Apparatus, systems and methods are provided for delivering brachytherapy to a target tissue region of a human or other mammalian body. In some embodiments, a flexible brachytherapy device is implanted that includes a therapy delivery portion having one or more radioactive sources securely retained thereto, and a tail portion extending from the therapy delivery portion. Once implanted, the tail portion may extend outside the body, where it may be folded and secured flat against the skin. The device may be removed at therapy completion. Other embodiments of the invention are directed to systems and methods for delivering brachytherapy devices to the body.
Abstract:
In an embodiment, a brachytherapy device includes a cartridge adapted for use with a brachytherapy applicator. A plurality of therapeutic members are stacked parallel to one another within the cartridge. Each therapeutic member includes a radioactive seed that is at least partially encapsulated by a polymeric material. Additionally, each therapeutic member can include at least one protrusion on an outer surface of the encapsulating polymeric material to reduce a tendency for the therapeutic member to migrate and rotate within a patient's body after the therapeutic member is implanted.