摘要:
Methods for manufacturing an isotopic filtration module and methods for filtering water according to its isotopic forms. In some implementations, graphene oxide flakes may be dispersed in an aqueous medium to form a graphene oxide solution. The graphene oxide solution may be applied to a substrate to form a laminated graphene oxide membrane comprising a plurality of graphene oxide sheets coupled together in a layered, interlocking structure. The laminated graphene oxide membrane may be positioned in a filtration housing configured to be coupled with a wastewater stream of a nuclear power plant in order to filter the wastewater stream according to its isotopic forms.
摘要:
Provided herein are methods for forming nanofibers. The current disclosure provides ceramic nanofibers, morphology-controlled ceramic-polymer hybrid nanofibers, morphology-controlled ceramic nanofibers, core-sheath nanofibers and hollow core nanofibers using ceramic precursor materials and polymer materials which are combined and undergo electrospinning. The current disclosure provides for methods of forming these nanofibers at low temperatures such as room temperature and in the presence of oxygen and moisture wherein the ceramic precursor cures to a ceramic material during the electrospinning process. Also disclosed are the nanofibers prepared by the disclosed methods.
摘要:
Superhydrophobic membrane structures having a beneficial combination of throughput and a selectivity. The membrane structure can include a porous support substrate; and a membrane layer adherently disposed on and in contact with the porous support substrate. The membrane layer can include a nanoporous material having a superhydrophobic surface. The superhydrophobic surface can include a textured surface, and a modifying material disposed on the textured surface. Methods of making and using the membrane structures.
摘要:
The present invention aims to provide a honeycomb-shaped ceramic porous body where the strength reduction upon forming a separation layer is less than conventional porous bodies. The ceramic porous body is provided with a honeycomb-shaped base material and an intermediate layer. At least a part of the ceramic porous body has a structure where aggregate particles are bonded to one another by an inorganic bonding material component. In the ceramic porous body, the intermediate layer thickness, which is the thickness of the intermediate layer, is 100 μm or more and 500 μm or less, the base material thickness at the shortest portion between the cells, but excluding the intermediate layer and the separation layer is 0.51 mm or more and 1.55 mm or less, and the ratio of the base material thickness to the intermediate layer thickness is 2.5 or more.
摘要:
A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln1-xAx)wCr1-yByO3-δ and a doped zirconia. Preferred materials are (La0.8Sr0.2)0.95Cr0.7Fe0.3O3-δ for the porous fuel oxidation layer, (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-δ for the dense separation layer, and (La0.8Sr0.2)0.95Cr0.3Fe0.7O3-δ for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.
摘要:
Disclosed herein is a method of preparing a nanoporous organic-inorganic hybrid film. The method includes preparing an organic sol including a compound having amino groups, a compound having isocyanate groups, and a solvent; adding an inorganic oxide precursor to the organic sol to form a mixed solution; and subjecting the mixed solution to heat treatment to form an organic molecule network structure in which the organic sol is gelled, and an inorganic molecule network structure located along a surface of the organic molecule network structure.
摘要:
Synthesis, fabrication, and application of nanocomposite polymers in different form (as membrane/filter coatings, as beads, or as porous sponges) for the removal of microorganisms, heavy metals, organic, and inorganic chemicals from different contaminated water sources.
摘要:
An electrochemical separation membrane and the manufacturing method thereof are disclosed. The method includes: a polymer solution preparing step to mix a polymer material, solvent and ceramic precursors thoroughly to form a polymer solution, wherein the polymer material and the ceramic precursors are dissolved uniformly in the solvent; a coating step to coat the polymer solution on a porous base material; a hydrolysis step to cause the porous base material coated with the polymer solution to contact an aqueous solution to hydrolyze the ceramic precursor into ceramic particles; and a drying step to remove the water and the solvent from the porous base material and in order to form the electrochemical separation membrane. The electrochemical separation membrane made of this method have better ion conductivity, interface stability and thermal stability based on the ceramic particles.
摘要:
Ultra-thin porous films are deposited on a substrate in a process that includes laying down an organic polymer, inorganic material or inorganic-organic material via an atomic layer deposition or molecular layer deposition technique, and then treating the resulting film to introduce pores. The films are characterized in having extremely small thicknesses of pores that are typically well less than 50 nm in size.
摘要:
The invention relates to the treatment of water, including for example treatment in connection with hydrocarbon production operations. Silica in water produces undesirable scaling in processing equipment, which causes excess energy usage and maintenance problems. Electrocoagulation (EC) at relatively high water temperature, followed by any of membrane distillation or forward osmosis (FO), may be combined with a subsequent process of ceramic ultra-filtration (UF filtration) employed to treat water. Water to be treated may be produced water that has been pumped from a subterranean reservoir. The treated water may be employed to generate steam. The treatment units (e.g., EC, forward osmosis, UF filtration, etc) can be configured into one system as an on-site installation or a mobile unit for on-site or off-site water treatment.