Abstract:
A structural fiber product usable as an adsorbent or the like is provided.A graft component for forming a graft chain is graft-polymerized onto a structural fiber object; the structural fiber object comprises a fiber assembly comprising at least a conjugated fiber, and an ethylene-vinyl alcohol-series copolymer exists on at least part of a surface of the fiber. The graft polymerization may be conducted, for example, by exposing a structural fiber object to radiation to generate an active species and immersing the structural fiber object in a liquid containing a graft component to bring the structural fiber object into contact with the graft component. According to the method, the graft component can be polymerized at a high degree of grafting, and a structural fiber product having an excellent adsorption characteristic is obtained.
Abstract:
Foam-based and powder-based adsorbents and a related method of manufacture are provided. The foam-based and powder-based adsorbents includes polymer foam or powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based or powder-based adsorbents includes irradiating polymer foam or powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based and powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.
Abstract:
A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.
Abstract:
The present invention relates to a hydrophilic crosslinked polymer, preferably in the form of porous particles, and to the preparation and use thereof. The polymer according to the invention is produced by polymerisation from chain-forming hydrophilic vinyl ethers and crosslinking, preferably heterocyclic divinyl ethers.
Abstract:
The present invention relates to a sorbent material for separation and purification of biopolymers, particularly nucleic acids, having a solid support substantially modified with a copolymer coating comprising aromatic monomers and crosslinking compounds and unsaturated esters or ethers preferably attached to the support via a vinylchlorsilane. The use of these materials for separation of nucleic acids, particularly a one-step isolation of DNA from lysates of different biological sources, is an object of the invention as well as a chromatographic column or cartridge at least partially filled with the sorbent material of the invention, a membrane-like device comprising the sorbent material of the invention, and a kit comprising the sorbent material of the invention in bulk or packed in chromatographic devices as well as other devices necessary for performing sample preparations.
Abstract:
There is provided a method for making swellable particles, said method comprising mixing initial particles, at least one monomer, at least one initiator, and at least one chain-transfer agent, wherein said mixing is performed under conditions in which said monomer is capable of forming oligomer or polymer or a mixture thereof. Also provided are swellable particles made by that method. Further provided is a method of making polymeric resin particles comprising mixing at least one subsequent monomer to those swellable particles and polymerizing said subsequent monomer.
Abstract:
Disposable article that include fibers formed from compositions comprising thermoplastic polymers and waxes are disclosed, where the wax is dispersed throughout the thermoplastic polymer.
Abstract:
The present invention relates to an asymmetric chromatography media suitable for separations applications, particularly as packed bed, fluidized bed or magnetized bed chromatography media. In certain embodiments, the asymmetric chromatography media comprises asymmetric particles, preferably beads, having at least two distinct, controlled pore size distributions. Preferably one of the distinct pore size distributions is in an internal region of the particle, and the other is in an external region or coating on the particle. These distinct pore size distributions can be modified with uniform or alternatively unique functional groups or mixtures of functional groups. The present invention allows for the control over pore size distribution within an asymmetric porous particle by providing a distinct internal region, preferably in the form of a bead, and a distinct external region, preferably in the form of a coating on the bead.
Abstract:
Capture particles for harvesting analytes from solution and methods for using them are described. The capture particles are made up of a polymeric matrix having pore size that allows for the analytes to enter the capture particles. The pore size of the capture particles are changeable upon application of a stimulus to the particles, allowing the pore size of the particles to be changed so that analytes of interest remain sequestered inside the particles. The polymeric matrix of the capture particles are made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. The capture particles may be used to isolate and identify analytes present in a mixture. They may also be used to protect analytes which are typically subject to degradation upon harvesting and to concentrate low an analyte in low abundance in a fluid.
Abstract:
Compositions and methods are disclosed for remediating environmental contaminants when such contaminants primarily include hydrophobic materials such as petroleum.