Abstract:
Disclosed are processes for the preparation of copper containing molecular sieves with the CHA structure having a silica to alumina mole ratio greater than about 10, wherein the copper exchange step is conducted via wet state exchanged and prior to the coating step and wherein in the copper exchange step a liquid copper solution is used wherein the concentration of copper is in the range of about 0.001 to about 0.25 molar using copper acetate and/or an ammoniacal solution of copper ions as copper source. Catalysts made by the processes, catalyst systems and methods of treating exhaust gas with the molecular sieves and catalysts are also disclosed.
Abstract:
Disclosed are processes for the preparation of copper containing molecular sieves with the CHA structure wherein the copper is exchanged into the Na+-form of the Chabazite, using a liquid copper solution wherein the concentration of copper is in the range of about 0.001 to about 0.4 molar. Also described are copper containing molecular sieves with the CHA structure, catalysts incorporating molecular sieves, systems and methods for their use.
Abstract:
A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.
Abstract:
Compositions and methods for depositing one or more metal or metal alloy films on substrates. The compositions contain a catalyst, one or more carrier particles and one or more water-soluble or water-dispersible organic compounds. Metal or metal alloys may be deposited on the substrates by electroless or electrolytic deposition.
Abstract:
A method of supporting a hydrocarbon synthesis catalyst material comprising a catalytically active metal and a carrier material on a substrate comprising the steps of: (a) applying the catalyst material to the substrate; and (b) heating the catalyst material to form a catalyst material layer fixed to the substrate, characterised in that—the catalyst carrier is a porous inorganic refractory oxide or precursor therefor; the catalyst material applied in step (a) comprises 60 to 90 weight % solvent calculated on the total weight of the catalyst material layer; when the catalyst material is subjected to the heating step (b) it comprises at most 10 weight % of solvent, calculated on the total weight of the catalyst material layer; in heating step (b) the catalyst material is heated to a temperature in the range between 250° C. and 800° C.; cracks having sub-millimetre widths are uniformly formed in the layer; after step (b) the catalyst material layer has a thickness of 5-200 microns. The control of cracking of the catalyst material on the substrate, especially the presence of cracks at regular distances such that there is no continuous catalyst layer on the substrate surface, reduces any stress build-up.
Abstract:
Compositions and methods for depositing one or more metal or metal alloy films on substrates. The compositions contain a catalyst, one or more carrier particles and one or more water-soluble or water-dispersible organic compounds. Metal or metal alloys may be deposited on the substrates by electroless or electrolytic deposition.
Abstract:
The present invention relates to a structured catalyst for reforming of gasoline and a method of preparing the same, more particularly to a structured catalyst for reforming of gasoline for fuel-cell powered vehicles prepared by wash-coating the transition metal based reforming catalyst on the surface of the ceramic honeycomb support wash-coated with sub-micron sized alumina or its precursor to sufficiently increase the effective surface area and the performance of the catalyst and a method of preparing the same.
Abstract:
A catalyst for production of acrylic acid which catalyst is so high in activity as to give a still higher selectivity of acrylic acid or a long-catalytic-life-time catalyst for production of acrylic acid which catalyst is so high in activity as to be able to give a high acrylic acid yield while suppressing the temperature rise of the oxidation reaction to a low one; and processes for production of acrylic acid using these catalysts. The catalyst includes an oxide and/or a composite oxide as an essential catalytic component, wherein the oxide and/or the composite oxide has a metal element composition shown by general formula (1): MoaVbWcCudOx (1) (wherein: when a=12, then 1≦b≦14, 0≦c≦12, 0 ≦d≦10, and 0
Abstract translation:用于生产丙烯酸的催化剂,其催化剂具有如此高的活性以提供丙烯酸的更高选择性或用于生产丙烯酸的长催化寿命催化剂,该催化剂的活性如此高 得到高的丙烯酸收率,同时将氧化反应的温度升高抑制到较低的一个; 以及使用这些催化剂生产丙烯酸的方法。 催化剂包括作为必需催化组分的氧化物和/或复合氧化物,其中氧化物和/或复合氧化物具有通式(1)所示的金属元素组成:<?在线配方说明=“In 线公式“end =”lead“?> Mo a sub> b> sub> (1)<?in-line-formula description =“In-line Formulas”end =“tail”?>(其中:当a = 12时,则1 <= b <= 14,0 < = c <= 12,0 <= d <= 10,0
Abstract:
Porous ceramic catalyst supports are pre-coated with a passivation layer prior to applying a catalyst or catalyst support coating, the passivation layer consisting of a coating of a liquid mixture comprising at least one coating material selected from the group of polyvinyl alcohol/vinyl amine copolymer, polyvinyl alcohol/vinyl formamide copolymer, and gelatin.
Abstract:
The present invention relates to a method for producing nanosized, thermally stable, and high surface area multicomponent metal oxides and the metal oxide products have been found to retain a high specific surface area, with particle size ranging from 3-10 nanometers even after subjecting them to elevated temperatures, which make them ideally suited for use as catalysts and catalytic carrier materials.