Abstract:
An ion exchanger according to a non-limiting embodiment may include an open cell polymer support and a microporous polymer matrix charged within the open cell polymer support. The microporous polymer matrix includes an ion conductive polymer. The ion conductive polymer may be obtained by polymerizing monomers having at least one ion exchange functional group and at least one cross-linkable functional group with a cross-linking agent having at least two cross-linkable functional groups.
Abstract:
The present invention relates to novel amphoteric ion exchangers which possess not only phthalamide groups of the formula (I) but also —(CH2)mNR1R2 groups and/or if appropriate —(CH2)mNR1R2R3 groups, wherein m is an integer from 1 to 4 and R1, R2, R3 in each case independently of one another are hydrogen, —CH3, —CH2CH3, —CH2CH2CH3, benzyl, —OCH2CH3 or —CH2CH2OH and X is H or Na or K, to a process for production thereof and also use thereof.
Abstract translation:本发明涉及新型的两性离子交换剂,其不仅具有式(I)的邻苯二甲酰胺基团,而且还具有 - (CH 2)m N R 1 R 2基团和/或如果合适的 - (CH 2)m N R 21 R 3基团,其中m是1至4的整数 R 1,R 2,R 3各自独立地为氢,-CH 3,-CH 2 CH 3,-CH 2 CH 2 CH 3,苄基,-OCH 2 CH 3或-CH 2 CH 2 OH,X为H或Na或K,为其制备方法,并且还使用 其中。
Abstract:
A method of isolating nucleic acid from a sample containing nucleic acid is provided. The method includes contacting the sample with a bifunctional material that contains an amino group and a carboxyl group and is positively charged at a first pH to allow binding of the nucleic acid to the bifunctional material; and extracting the nucleic acid at a second pH higher than the first pH from the complex.
Abstract:
A process for the production of dual-functional ion exchange resins from lignocellulosic agricultural material involving anionization of the lignocellulosic agricultural material with citric acid and then cationization of the lignocellulosic agricultural material with dimethyloldihydroxyethylene urea (DMDHEU) and choline chloride, or cationization of the lignocellulosic agricultural material with DMDHEU and choline chloride and then anionization of the lignocellulosic agricultural material with citric acid.
Abstract:
A novel sorbent suitable for use as a stationary phase in a chromatography column, the core of which consists of an organic polymer of synthetic or natural origin. Further, the carrier exhibits a plurality of covalently bonded non-aromatic zwitterionic groups on its surface. Additionally, the invention also relates to a method for purifying a particular biological macromolecule, such as a protein or a nucleic acid, by zwitterionic ion exchange chromatography as well as an ion exchange column suitable for use in the zwitterionic ion exchange chromatography.
Abstract:
The specification relates to an adsorptive material for removing malodorous substances from gases and liquids. The adsorptive material comprises a substrate having macromonomers which are bonded to the substrate and contain functional groups capable of adsorbing polar substances. The adsorptive material is produced by applying to the substrate a mixture of a monosaccharide and the macromonomers and then grafting the macromonomers to the substrate.
Abstract:
The ion exchange resin beads have functional groups of formula I wherein R.sup.1, R.sup.2, R.sup.3, R.sup.4, m, r and q have the meanings stated in claim 1 and which have a matrix of a cross-linked polymer wherein the level of cross-linkages is decreased in the shell area is compared to the core area.These ion exchange resin beads are prepared by reacting resin beads which have primary or secondary amino groups and the mentioned matrix of a cross-linked polymer with a1) a hypophosphite salt in the presence of an acid, or a2) a hypophosphorous acid and b) formaldehyde or a formaldehyde releasing compound.
Abstract:
A unique polymer was synthesized via copolymerization of vinylpyridine and acetoxystyrene under radical-initiated conditions followed by acidic or basic hydrolysis of the acetoxy group to afford the corresponding hydroxy group. The built-in acid-base dual functionality (phenolic and pyridyl units) in this polymer backbone gives rise to its unique solubility properties over a wide pH range in both aqueous and non-aqueous media. Due to its amphoteric nature, this polymer finds application as an anti-stat, viscosity modifier, and/or ion-exchange resin.
Abstract:
Thermally regenerable ion exchange resins, which are oxidation resistant, comprising polyetheramines derived from a poly (.alpha.-haloepoxyethane) which has been crosslinked and aminated.