Abstract:
A breathing circuit component includes an inlet, an outlet and an enclosing wall. The enclosing wall defines a gases passageway between the inlet and the outlet. At least a region of the enclosing wall is formed from a breathable material that allows the passage of water vapor without allowing the passage of liquid water or respiratory gases. The breathing circuit component may be the expiratory limb of a breathing circuit.
Abstract:
Armouring tape (102) for wrapping around a hose (300) during its fabrication by a hose-wrapping machine (200; 400). The tape (102) is coiled into a roll (100) having a hollow core (109) from which the tape (102) is unwound to be wrapped onto the hose (300). The hose-wrapping machine (200; 400) rotatably mounts the roll (100) with the hose (300) passing through the roll core (109), the roll axis (108) being skewed to the hose axis (304) by the helix angle at which the tape (102is to be wrapped onto and along the hose (300). The hose (300) is moved longitudinally through the longitudinally static roll (100) and at the same tine, the roll (100) is rolated around the longitudinal axis (304) of the non-rotating hose (300). The armouring tape (102) unwinds from the inside (109) or the roll onto and along the hose (300) so as to wrap the hose (300) with a uniform helix of armouring tape (102).
Abstract:
A flexible tube having a laminated multi-layer structure including an outer layer composed of a main tube body layer formed of thermoplastic synthetic resin in a predetermined thickness and a reinforcing layer provided on the inner side of the main tube body layer, and an inner layer formed of a thin film sheet of air tight and low friction material. The inner layer is formed by rolling an elongated strip of a thin film sheet into a tubular form such that opposite lateral sides of the thin film sheet are overlapped one on the other to provide a thick wall portion extending longitudinally of and at one angular position of the inner layer.
Abstract:
The present invention provides a unitary run flat tire (RFT) reinforcement using filament material that is formed into a relatively rigid shape. The reinforcement is insertable into a mold for an RFT support and can maintain the needed structural rigidity for such insertion. Further, the invention provides an RFT support that is molded and includes the RFT reinforcement. The invention also provides a wheel assembly including a tire, a rim, and an RFT support between the rim and the tire, where the support includes the RFT reinforcement. The RFT support can have a colored indicator formed or subsequently applied thereto to indicate one or more attributes of the support.
Abstract:
A high-speed automated method and operating system is disclosed for constructing continuous-walled tubular structures in space having unlimited dimensions. The system comprises a relatively short tubular conveyor with a flexible endless conveying surface sliding in a longitudinal direction around a smooth cylindrical inner guide tube, and a plurality of wrapping wheels containing wrapping material moving in transverse directions. By moving the conveyor and simultaneously moving the wrapping wheels around the conveyor, sheets of material are wrapped around the outer conveying surface made firm by the inner guide tube to continuously manufacture a rigid multi-layered laminated walled cylindrical structure with an inside diameter equal to the outside diameter of the tubular conveyor. By varying the conveyor speed-to-wrapping wheel speed ratio, any wall thickness is obtained. The wrapping material is rolled into spools, mounted inside cartridges, and loaded into the wrapping wheels for easy insertion and replacement. Thus, the manufacturing process can be continued indefinitely to obtain a tubular structure having any dimensions desired. Since the sheets of wrapping material are transported to orbit in rolls with very high packing density, the machine can construct huge structures in orbit with relatively few trips.
Abstract:
Fiber reinforced plastic tubing is formed by an innermost layer of braided strands that include longitudinal stud fill strands within the braid, a second layer of longitudinal strands, and a third layer of braided strands, all thoroughly encased in a monolithic mass of plastic matrix material that is not, itself, divided into layers. The tube is fabricated on a continuous basis by winding two sets of strands in opposite directions on a mandrel and braiding the two sets with each other and with stud fill strands that prevent that first layer of braid from stretching longitudinally and thereby tightening immovably on the mandrel. The strands are braided dry but are wetted with liquid plastic matrix material as the braid is compacted on the mandrel. A fourth set of strands is wetted by liquid plastic matrix material and guided to lie longitudinally along and evenly spaced about the wetted first braid, and fifth and sixth set of strands are braided dry around the fourth set and compacted and wetted to press against the fourth set and to press the fourth set against the first setted braid. No curing is done until after the latter compacting and wetting. The multi-layer tubing is pulled along the mandrel by alternately-operating gripping devices in which a soft tube sealed into a rigid shell is expanded inwardly by fluid pressure between the shell and the soft tube, thereby forcing the soft tube to grip the tubing around the entire circumference of the tubing.
Abstract:
This invention relates to industrial manufacture of composite tubes in a continuous fashion. The invention utilizes a segmented mandrel which proceeds as a train of endwise joined segments through a composite tube forming machine. Segments are added to and subtracted from the mandrel during manufacture of the tubes.
Abstract:
A VECHICLE PROPELLER SHAFT INCLUDES A PAIR OF SPACED END MEMBERS HAVING INNER ENDS WITH CHARACTERIZED SURFACES. A LIGHT BUT STIFF CYLINDRICAR ARBOR, SUCH AS OF POLYURETHANE FOAM, CONNECTS THE END MEMBERS AND A TUBE FORMED OF HARDENED THERMOSETTING RESIN REINFORCED WITH FIBER GLASS FILAMENTS IF FORMED ON THE ARBOR AND INTERLOCKINGLY ENGAGES THE CHARACTERIZED SURFACES OF THE END MEMBERS. A METHOD OF FORMING SUCH A SHAFT INCLUDES STEPS OF FORMING A POLYURETHANE FOAM ARBOR BETWEEN THE END MEMBERS AND FORMING THE RESIN BONDED FIBERGLASS TUBE IN PLACE ON THE ARBOR AND END MEMBERS.