Abstract:
A system for multimodal detection of objects in a field of vision located in front of or behind a vehicle, wherein a surroundings-sensing process is carried out by a radar sensor, the radar sensor output signal is fed to a radar signal analysis method, and a visual surroundings-sensing process is carried out by a video sensor, the video output signal being fed to a video analysis method. Object determination takes place such that objects detected by the radar signal analysis method are fed for verification to an object confirmation and situation analysis module by an object detected by the video analysis method.
Abstract:
A driver assistance system for motor vehicles has a sensor device for measuring data about the environment of the vehicle, at least two assistance functions, and a data processing device, which analyzes the measured data and generates at least one specific environmental hypothesis for each assistance function, which provides output data in a form prepared for the corresponding assistance function, at least one environmental hypothesis which has a structure divided into a plurality of partial hypotheses being predefined in the data processing device, and the partial hypotheses having such a logical relationship with one another that output data of one partial hypothesis flow into the generation of the other partial hypothesis, and at least two assistance functions directly or indirectly use a shared partial hypothesis.
Abstract:
The invention discloses a method of changing the trigger threshold of a brake stand-by function of a vehicle brake. The brake stand-by function generates brake pressure in wheel brakes without application of a brake pedal. The trigger threshold value for the brake stand-by function is determined by the following steps: a) determining an average return speed of an accelerator pedal; b) changing the trigger threshold value for the brake stand-by function depending on the determined average return speed of the accelerator pedal. The method disclosed allows reducing the number of spurious releases of the brake stand-by function, which a sportive driving style brings about. In another embodiment of the method, the position of the accelerator pedal is used to change the trigger threshold value for the brake stand-by function.
Abstract:
In a brake control system for a vehicle employing a brake-by-wire (BBW) hydraulic control unit, a master cylinder serves as a first fluid pressure source and a pump serves as a second fluid pressure source operated during a BBW system normal brake operating mode. Also provided is a manual-brake hydraulic circuit capable of supplying hydraulic pressure from the master cylinder to the wheel-brake cylinder during a fail-safe operating mode. A back-flow prevention device is disposed in a pump outlet passage, intercommunicating the manual-brake hydraulic circuit and the pump outlet, for permitting free flow in one direction from the pump to the wheel cylinder. A normally-open inflow valve is disposed in the pump outlet passage downstream of the back-flow prevention device. A normally-open shutoff valve is disposed in the manual-brake hydraulic circuit upstream of the normally-open inflow valve, and unactuated and opened during the fail-safe operating mode.
Abstract:
A system and method for brake pre-charging includes pre-filling brakes, based on proximity information from a forward-looking sensor, to reduce the initial delays associated with braking. By reducing the initial delay in converting driver brake pressure requests into actual brake torque to the wheels, the stopping distance required for braking is reduced.
Abstract:
A brake control system for a motor vehicle comprising a brake control unit which controls increasing and decreasing of a brake pressure of a wheel cylinder from a pressure source by driving plural solenoid valves without a brake operation by a driver. The system comprises a flow back control unit which controls the brake pressure of a wheel cylinder to drive the plural solenoid valves before control by the brake control unit and returns the brake fluid to the pressure source from the wheel cylinder.
Abstract:
A vehicular brake control apparatus detects risky occasions and locations that may be risky by using, for example, an infrastructure information input device or a navigation device, and, for such locations and the like, performs the pre-charge so that braking force will be promptly generated. Therefore, the pre-charge can be precisely performed under necessary circumstances, irrespectively of the driver's accelerator operation. Hence, when the driver depresses the brake pedal at such a location or the like, braking force will be promptly generated. Thus, accidents and the like can be prevented.
Abstract:
A system and method for brake pre-charging includes pre-filling brakes, based on proximity information from a forward-looking sensor, to reduce the initial delays associated with braking. By reducing the initial delay in converting driver brake pressure requests into actual brake torque to the wheels, the stopping distance required for braking is reduced.
Abstract:
A method for controlling the speed of a motor vehicle (10), in which an acceleration-demand signal (asetpoint) is generated which represents a positive or negative setpoint acceleration of the vehicle, and either a control command (A) is output to the engine or a control command (B) is output to braking system (24, 26) of the vehicle as a function of this signal, wherein a signal (F) for preloading the braking system is output when the acceleration-demand signal (asetpoint) falls below a threshold value which lies above a value at which the braking system (24, 26) is activated.
Abstract:
A system and method for reducing speed of a vehicle include determining whether or not there is a need for operator braking action, determining a stand-by braking torque when there is a need for operator braking action, determining a transition braking torque based on the stand-by braking torque and an automatic distance regulation (ADR) braking torque, and applying the transition braking torque to at least one wheel of the vehicle. The transition braking torque may be applied using friction brakes associated with wheels, respectively. The ADR braking torque is represented by an ADR braking request that is generated when an actual distance from the preceding vehicle in front becomes less than a set desired distance. The ADR braking request may be provided at an ADR controller.