Abstract:
Disclosed herein are isolated multi-specific heteromultimer constructs that bind to CD3 expressed on T-cells and to an antigen expressed on B-cells. The multi-specific heteromultimer constructs are capable of bridging T- and B-cells and mediating killing of B-cells. The multi-specific heteromultimer constructs are based on a heterodimeric Fc scaffold or on a segmented albumin scaffold. Also disclosed herein are multi-specific heteromultimer constructs that bind to HER2 and HER3.
Abstract:
IVIG replacement compounds are derived from recombinant and/or biochemical creation of immunologically active biomimetic(s). These replacement compounds are then screened in vitro to assess each replacement compound's efficiency at modulating immune function. Particular replacement compounds are selected for further in vivo validation and dosage/administration optimization. Finally, the replacement compounds are used to treat a wide range of diseases, including inflammatory and autoimmune diseases
Abstract:
IVIG replacement compounds are derived from recombinant and/or biochemical creation of immunologically active biomimetic(s). These replacement compounds are then screened in vitro to assess each replacement compound's efficiency at modulating immune function. Particular replacement compounds are selected for further in vivo validation and dosage/administration optimization. Finally, the replacement compounds are used to treat a wide range of diseases, including inflammatory and autoimmune diseases.
Abstract:
Isolated monoclonal antibodies which bind to human epidermal growth factor receptor 2 (HER2), and related anti-body-based compositions and molecules, are disclosed. Pharmaceutical compositions comprising the antibodies and therapeutic and diagnostic methods for using the antibodies are also disclosed.
Abstract:
IVIG replacement compounds are derived from recombinant and/or biochemical creation of immunologically active biomimetic(s). These replacement compounds are then screened in vitro to assess each replacement compound's efficiency at modulating immune function. Particular replacement compounds are selected for further in vivo validation and dosage/administration optimization. Finally, the replacement compounds are used to treat a wide range of diseases, including inflammatory and autoimmune diseases
Abstract:
The invention relates to multimeric fusion proteins which bind to human Fc receptors. The invention also relates to therapeutic compositions comprising the proteins, and their use in the treatment of immune disorders.
Abstract:
The present invention describes novel immunoglobulin compositions that co-engage at least two antigens, e.g. a first and second antigen, or, as outlined herein, three or four antigens can be bound, in some of the scaffold formats described herein. First and second antigens of the invention are herein referred to as antigen-1 and antigen-2 respectively (or antigen-3 and antigen-4, if applicable. As outlined herein, a number of different formats can be used, with some scaffolds relying combinations of monovalent and bivalent bindings.