Abstract:
A conductive adhesive tape includes a conductive layer, and an adhesive layer formed on the surface of the conductive layer. In the adhesive layer, an adhesive layer through-hole penetrating the adhesive layer in the thickness direction thereof is formed. The conductive layer includes a conductive layer passage portion formed in the adhesive layer through-hole. A low melting point metal layer is provided at an end face of the conductive layer passage portion, the end face reaching surface of the adhesive layer.
Abstract:
Methods of making adhesive articles providing air egress by supplying a route for the air to flow out from under the construction are described. One method includes providing a release liner comprising a moldable layer having a release surface and a back surface; applying a first pattern of a first non-adhesive material to a first portion of the release surface; applying a second pattern of a second non-adhesive material to a second portion of the release surface, wherein the second pattern partially overlaps the first pattern; embedding at least one of the first or second non-adhesive materials into the moldable layer, and transferring an adhesive layer having a front and back surface and end edges onto the release liner, wherein the front surface of the adhesive layer is adhered to the release surface of the release liner.
Abstract:
A method of making a repositionable transfer adhesive is provided. The method includes the steps of (a) providing a release liner having opposing first and second surfaces, the first surface having a release value of at least 10 grams per inch, as measured according to the Tape Release Test, lower than the second surface; (b) providing an adhesive composition comprising microsphere adhesive and a binder adhesive; (c) coating the adhesive composition on the first surface of the release liner such that the microspheres protrude from the binder adhesive; (d) drying the adhesive composition to yield a microsphere transfer adhesive; (e) winding the release liner such that the microsphere transfer adhesive is wound inwardly and the second surface of the liner contacts the microspheres; and (f) applying pressure to the second surface of the liner.
Abstract:
The present invention relates to sheet-like materials suitable for use in the containment and protection of various items, as well as the preservation of perishable materials such as food items. More particularly, the present invention provides an improved storage wrap material comprising a sheet of material having a first side and a second side. The first side comprises an active side exhibiting an adhesion peel force after activation by a user which is greater than an adhesion peel force exhibited prior to activation by a user. The storage wrap material may be activated by different approaches, but in a preferred embodiment the active side is activatible by an externally applied force exerted upon the sheet of material. The force may be an externally applied compressive force exerted in a direction substantially normal to the sheet of material. In accordance with the present invention, the storage wrap material is selectively activatible by a user in discrete regions to provide adhesive properties where and when desired. The use of an adhesive or adhesive-like substance on the surface of the material provides an adhesion peel force after activation which is sufficient to form a barrier seal against a target surface at least as great as those of the material and the target surface such that perishable items, such as food items, may be effectively preserved. The storage wrap materials of the present invention may be utilized to enclose and protect a wide variety of items by various methods of application, including direct application to the desired item, enclosure of the desired item and securement to itself, and/or in combination with a semi-enclosed container.
Abstract:
A pressure-sensitive adhesive tape or sheet having a pressure-sensitive adhesive layer formed on at least one surface of the support thereof, wherein the surface of the pressure-sensitive adhesive layer on at least one surface of the support partly has projected spots of fibers. The projected spots of fibers are preferably raised spots of fibers that are raised from the surface of the pressure-sensitive adhesive layer. The pressure-sensitive adhesive tape or sheet is favorable for flooring material fixation. The pressure-sensitive adhesive tape or sheet is produced according to a flocking method that comprises flocking the surface of the pressure-sensitive adhesive layer on at least one surface of the support to thereby form projected spots of fibers partly in the surface of the pressure-sensitive adhesive layer.
Abstract:
A method of making a three-dimensional film structure having controllable contact properties comprises making separable surface elements on a top portion of a film structure and stretching the film structure to separate the separable surface elements, thereby obtaining a desired surface structure which delivers a certain contact property such as a pressure sensitive adhesive property. The separable surface elements are provided using a cut film surface, a stemmed film, or a layer of particles.
Abstract:
This invention relates to an adhesive article which provides air egress. Air egress is provided by supplying a route, such as areas of no initial adhesion for the air to flow out from under the construction. The invention relates to an adhesive article comprising a facestock having a front surface and a back surface, a continuous layer of adhesive having an upper surface and a lower surface wherein the upper surface of the adhesive layer is adhered to the back surface of the facestock, and a plurality of spaced-apart non-adhesive material which is in contact with the lower surface of the adhesive layer wherein the lower surface of the adhesive layer has a Sheffield roughness of at least about 10 and the adhesive article provides air egress. The invention also relates to methods of preparing the adhesive articles. These articles have usefulness as industrial graphics images, as well as decorative coverings, etc. The articles provide air egress and optionally repositionability and slideability.
Abstract:
A substance delivery system has a three dimensional structure with outermost surface features and spaces for containing a substance. The substance has a level below the outermost surface features such that the substance is protected from inadvertent contact with external surfaces. The substance remains protected until the three dimensional structure is sufficiently deformed into a substantially two dimensional structure and the substance is thereby exposed to contact an external surface without compliance of the external surface being necessary. Deforming is preferably achieved by a compression force, wherein the outermost surface features of the three dimensional structure deform in a direction of the compression force. A method of making the three dimensional material includes the steps of coating a substance onto a forming surface, transferring the coating of substance from the forming surface to a piece of material, and forming the piece of material into a three dimensional structure on the forming surface while the substance is in contact with the forming surface.