摘要:
Reforming of a gasification gas is performed by supplying both a tar-containing gasification gas and oxygen to a reforming furnace and burning a part of the gasification gas to heat an inside of the reforming furnace to a target reforming temperature required for reforming. Oxygen 9 and a first stage gasification gas 3a are supplied to a reforming furnace at an end of the furnace in amounts so as to attain the target reforming temperature required for reforming by combustion of the gasification gas with the oxygen to form a heating zone A in the reforming furnace 1. The remaining gasification gas is supplied as second stage gasification gas 3b to a vicinity downstream of the heating zone A in the reforming furnace 1 to form a reforming zone B.
摘要:
Systems and methods for processing a hydrocarbon are provided. The method can include gasifying a feedstock within a gasifier to provide a raw syngas. The raw syngas can be processed within a purification system to provide a treated syngas. A first portion of the treated syngas can be converted into a first effluent in a first methanator. The first effluent can be mixed with a second portion of the treated syngas to provide a first mixed effluent. The first mixed effluent can be converted into a second effluent in a second methanator. The second effluent can be mixed with a third portion of the treated syngas to provide a second mixed effluent. The second mixed effluent can be converted into a third effluent in a third methanator.
摘要:
In one embodiment of the invention, a method of mounting a surgical robotic arm to a set-up arm of a robotic surgical system is provided that includes sliding a pair of guide slots of the surgical robotic arm over a pair of guide tabs in the set-up arm; aligning electrical connectors in the set-up arm to electrical connectors of the surgical robotic arm; and coincidentally mating male electrical connectors to female electrical connectors while finally mating the guide tabs in the set-up arm to flanges of a housing of the surgical robotic arm.
摘要:
The invention relates to a method for utilizing biomass, wherein the following steps are performed: First, at least one raw material containing carbon is thermally gasified. In a next step, the synthesis gas produced in the gasification is purified. During said purification, the temperature of the synthesis gas is changed. Then the synthesis gas is preferably converted into a liquid fuel by means of a catalyzed chemical reaction, wherein a straw-like biomass is selected as the raw material containing carbon, the gasification is performed in a fixed bed reactor, and the ash-softening temperature of the straw-like raw material is increased by adding at least one alkaline-earth salt.
摘要:
Biomass is gasified to generate syngas. The syngas is subjected to thermal cracking. Heat from syngas exiting a thermal cracking stage is transferred to syngas entering the thermal cracking stage. Biomass gasification apparatus may include a thermal pathway connected to transfer heat from an outlet of a thermal cracking process to an inlet of the thermal cracking process. Energy efficiency is enhanced. Syngas may be used as fuel for engines or fuel cells, burned to yield heat, or processed into a fuel.
摘要:
The present invention provides a gas conditioning system for processing an input gas from a low temperature gasification system to an output gas of desired characteristics. The system comprises a two-stage process, the first stage separating heavy metals and particulate matter in a dry phase, and the second stage including further processing steps of removing acid gases, and/or other contaminants. Optional processes include adjusting the humidity and temperature of the input gas as it passes through the gas conditioning system. The presence and sequence of processing steps is determined by the composition of the input gas, the desired composition of output gas for downstream applications, and by efficiency and waste minimization.
摘要:
Systems and processes for producing syngas and power therefrom are provided. One or more feedstocks and one or more oxidants can be combined in a fluidized reaction zone operated at a temperature from 550° C. to 1,050° C. to provide a syngas. Heat can be indirectly exchanged in a first zone from the syngas to a condensate to provide steam. Heat can also be indirectly exchanged in a second zone from the syngas to the steam to provide superheated steam. Heat can then be indirectly exchanged in a third zone from the syngas to provide a cooled syngas and the condensate for the first zone. At least a portion of the superheated steam can be directly supplied to one or more steam turbines to produce power.
摘要:
The present invention relates to a process and system for gasifying biomass or other carbonaceous feedstocks in an indirectly heated gasifier and provides a method for the elimination of condensable organic materials (tars) from the resulting product gas with an integrated tar removal step. More specifically, this tar removal step utilizes the circulating heat carrier to crack the organics and produce additional product gas. As a benefit of the above process, and because the heat carrier circulates through alternating steam and oxidizing zones in the process, deactivation of the cracking reactions is eliminated.
摘要:
A hydrocarbon material processing system can reduce consumption of fossil fuel, environmental loads, and cost for processing a hydrocarbon material. The hydrocarbon material processing system has a gasification furnace (10) for pyrolyzing and gasifying wastes (51), waste plastics (52), pyrolysis tar (53), residual hydrocarbon heavy oil (54), and organic matter such as biomass (55) to produce a heat source gas. The hydrocarbon material processing system also has a cracking furnace (101) for thermally cracking a hydrocarbon material by using the heat source gas produced in the gasification furnace (10).
摘要:
The fixed-bed gasifier and method in accordance with the invention operates with a solid material batch that is perfused by air and/or steam in opposing direction. Compared with the resultant pyrolysis coke batch, the actual pyrolysis zone is thin enough so as to result in a material dwell time in the pyrolysis zone of only a few minutes, while the dwell time of the pyrolysis coke in the pyrolysis coke layer may last up to several hours. The pyrolysis occurs in an allothermic manner. High-energy low-dust and low-tar gas is formed. The process control can be automated in a reliable manner. The exhaust of reaction gases and pyrolysis gases occurs through the heating chamber, whereby the last tar components are eliminated.