Abstract:
Methods and apparatus relating to location-based haptic direction finding are described. In an embodiment, logic (e.g., included in a mobile computing device) redirects one or more navigational hints to one or more trembler devices instead of a display device and/or speakers of the mobile computing device in response to a request to provide haptic directional cues. Other embodiments are also disclosed and claimed.
Abstract:
A method for guiding the blind is disclosed. The method includes: determining a target direction; and controlling a mechanical device to shift its center of gravity toward the target direction according to the target direction; wherein the mechanical device comprises a balance weight, a connecting rod, and a rotating axis, the connecting rod is connected to the rotating axis, and the balance weight is located on the connecting rod.
Abstract:
A system for providing, to a user, navigation directions to a point of interest. The system includes a device having an output unit configured to output the navigation directions to the point of interest. The device is configured to communicate, to an unmanned vehicle, a point of interest identification. The system also includes the unmanned vehicle having a camera configured to detect image data. The unmanned vehicle is configured to determine Whether the point of interest identification is detected from the image data. The unmanned vehicle is also configured to determine a point of interest location when the point of interest identification is detected from the image data. The unmanned vehicle is also configured to determine point of interest navigation data based on the point of interest location. The unmanned vehicle is also configured to communicate, to the device, the point of interest navigation data.
Abstract:
A device for providing spatial information to a user. The device includes a camera configured to detect image data. The device also includes an accelerometer configured to determine step data. The device also includes a processor connected to the camera and the accelerometer and configured to determine a distance travelled per step of the user based on the image data and the step data. The processor is also configured to determine a distance to a reference point based on the image data. The processor is also configured to determine a number of steps corresponding to the distance to the reference point based on the distance travelled per step of the user. The device also includes an output unit connected to the processor and configured to output the spatial information indicating the number of steps corresponding to the distance to the reference point.
Abstract:
A system for guiding a swimmer that includes a destination device configured to be arranged near a destination location which a swimmer will swim towards. The system further includes directional determination equipment configured to determine a direction the swimmer should swim towards based, at least in part, on the swimmer's current position in reference to the destination device. The system further includes directional guidance equipment configured to indicate to the swimmer the determined direction the swimmer should swim towards, wherein the directional guidance equipment includes a first guidance device configured to be worn by the swimmer while swimming and having first vibration hardware for vibrating the first guidance device, and wherein the directional guidance equipment dynamically indicates for the swimmer to swim in the direction via at least the first vibration means.
Abstract:
Systems, methods, and related technologies are provided for enhanced navigation instruction. In one implementation, a likelihood of non-compliance by a user with the navigation instruction can be determined with respect to a navigation instruction, based on the likelihood of non-compliance by the user with the navigation instruction. One or more interfaces at which to provide a notification that corresponds to the navigation instruction can be selected. The notification can be provided via the selected interface(s). Various other technologies are also disclosed.
Abstract:
The invention relates to a haptic feedback module to be built into a motor vehicle for a mobile device (3) having touch-sensitive surface (3a), characterized in that said haptic feedback module comprises at least one actuator (17) configured to transmit a movement to said mobile device (3). The invention also relates to a control device for a motor vehicle which includes such a haptic feedback module.
Abstract:
A system for exerting forces on a user. The system includes a user-mounted device including one or more masses, one or more sensors configured to acquire sensor data, and a processor coupled to the one or more sensors. The processor is configured to determine at least one of an orientation and a position associated with the user-mounted device based on the sensor data. The processor is further configured to compute a force to be exerted on the user via the one or more masses based on a force direction associated with a force event and at least one of the orientation and the position. The processor is further configured to generate, based on the force, a control signal to change a position of the one or more masses relative to the user-mounted device.
Abstract:
Described herein is a control system that facilitates assistance mode(s). In particular, the control system may determine a particular assistance mode associated with an account. This particular assistance mode may specify (i) operations for an aerial vehicle to carry out in order to obtain sensor data providing environment information corresponding to a location associated with the account and (ii) feedback processes to provide feedback, via a feedback system associated with the account, that corresponds to respective environment information. The control system may transmit to the aerial vehicle an indication of the particular operations corresponding to the particular assistance mode and may then receive environment information for the location associated with the account. Based on the received environment information, the control system may apply the specified feedback processes to initiate feedback in accordance with the particular assistance mode via the associated feedback system.
Abstract:
A tactile communication apparatus that includes a signal receiver configured to decode data received via a wireless signal a plurality of electro tactile pads on one side, each pad configured to respectively activate and deactivate to form a plurality of pad combinations based on a plurality of activation signals, and a communication processor configured to generate the plurality of electro tactile pad activation signals based on the received data so as to convey the data to a user through the plurality of pad combinations of the tactile communication apparatus.