Abstract:
In various embodiments, a sensor apparatus is provided. The sensor apparatus includes a sensor device having a plurality of electrical contacts; a housing having a plurality of sidewalls; and a metal carrier structure, which extends into the housing in a manner passing through two mutually opposite sidewalls from the plurality of sidewalls. The metal carrier structure is embodied in a resilient fashion at least in the direction of a sidewall through which the metal carrier structure extends. The sensor device having the plurality of electrical contacts is mounted in a resilient fashion on the metal carrier structure and is electrically conductively connected to the metal carrier structure by the plurality of contacts.
Abstract:
The invention discloses a capacitive pressure sensor and a method of fabricating the same. The capacitive pressure sensor includes a fixed plate configured as a back plate, a movable plate configured as diaphragm for sensing pressure, wherein a cavity is formed between the fixed plate and the movable plate, an isolation layer between the fixed plate and the movable plate and electrical contacts thereof for minimizing the leakage current, plurality of damping holes for configuring the contour of the fixed plate as the deflected diaphragm when pressure is exerted, a vent hole extending to the cavity having resistive air path for providing equilibrium to the diaphragm and an extended back chamber for increasing the sensitivity of the capacitive pressure sensor. The capacitive pressure sensor is also configured for minimizing parasitic capacitance.
Abstract:
According to one embodiment, a MEMS device is disclosed. The device includes a substrate, a MEMS element provided on the substrate, a first film having a plurality of through holes. The first film and the substrate form a cavity containing the MEMS element. The device further includes a second film provided on the first film, a third film provided on the substrate, and including a first region and a second region outside the first region, the first region and the second region being different from each other in height from the substrate. The height from the substrate of the first region of the third film is lower than the height from the substrate of the second region of the third film.
Abstract:
Input devices are provided. In accordance with an example embodiment, an input device includes an interface layer that flexes in response to pressure, a plurality of sense electrodes, a dielectric between the sense electrodes and the interface layer, and interconnecting circuitry. The dielectric compresses or expands in response to movement of the interface layer, and exhibits dielectric characteristics that vary based upon a state of compression of the dielectric. The interconnecting circuitry is coupled to the sense electrodes and provides an output indicative of both the position of each sense electrode and an electric characteristic at each sense electrode that provides an indication of pressure applied to the dielectric adjacent the respective sense electrodes.
Abstract:
A MEMS force sensor has: a substrate; a fixed electrode coupled to the substrate; and a mobile electrode suspended above the substrate at the fixed electrode to define a sensing capacitor, the mobile electrode being designed to undergo deformation due to application of a force to be detected. A dielectric material region is set on the fixed electrode and spaced apart by an air gap from the mobile electrode, in resting conditions. The mobile electrode comes to bear upon the dielectric material region upon application of a minimum detectable value of the force, so that a contact surface between the mobile electrode and the dielectric material region increases, in particular in a substantially linear way, as the force increases.
Abstract:
A capacitive pressure sensing semiconductor device is provided, which has pressure resistance against pressure applied by a pressing member and can detect the pressure surely and efficiently. The pressure sensing semiconductor device includes a pressure detecting part, which detects pressure as a change in capacitance, and a package that receives the pressure detecting part within. The pressure detecting part includes a first electrode and a second electrode disposed to oppose the first electrode, with a determined distance therebetween. Capacitance is formed between the first electrode and the second electrode, and changes according to a change in said distance caused by pressure transmitted to the first electrode by a pressing member. The package also includes a pressure transmitting member that transmits, to the first electrode of the pressure detecting part, the pressure applied by the pressing member.
Abstract:
Most mechanical tests (compression testing, tensile testing, flexure testing, shear testing) of samples in the sub-mm size scale are performed under the observation with an optical microscope or a scanning electron microscope. However, the following problems exist with prior art force sensors as e.g they cannot be used for in-plane mechanical testing (a- and b-direction) of a sample; they cannot be used for vertical testing (c-direction) of a sample. In order to overcome the before mentioned drawbacks the invention comprises the following basic working principle: A force is applied to the probe (2) at the probe tip (1) of the sensor. The force is transmitted by the sensor probe (2) to the movable body (3) of the sensor. The movable body is elastically suspended by four folded flexures (4), which transduce the force into a deflection dx. This deflection is measured by an array of capacitor electrodes, called capacitive comb drive (6).
Abstract:
A method for manufacturing an integrated circuit includes forming in a substrate a measuring circuit sensitive to mechanical stresses and configured to supply a measurement signal representative of mechanical stresses exerted on the measuring circuit. The measuring circuit is positioned such that the measurement signal is also representative of mechanical stresses exerted on a functional circuit of the integrated circuit. A method of using the integrated circuit includes determining from the measurement signal the value of a parameter of the functional circuit predicted to mitigate an impact of the variation in mechanical stresses on the operation of the functional circuit, and supplying the functional circuit with the determined value of the parameter.
Abstract:
A triaxial force sensor including: a deformable membrane; a detector detecting a deformation of the membrane configured to carry out a triaxial detection of the force to be detected; and an adhesion mechanism disposed at least at one of the principal faces of the deformable membrane, configured to secure the one of the principal faces of the deformable membrane to at least one elastomer material to be acted upon by the force to be detected, and distributed uniformly at a whole of the surface of the one of the principal faces of the deformable membrane, the deformable membrane being disposed between a cavity and the elastomer material.
Abstract:
Sensors, sensing arrangements and devices, and related methods are provided. In accordance with an example embodiment, an impedance-based sensor includes a flexible dielectric material and generates an output based on pressure applied to the dielectric material and a resulting compression thereof. In certain embodiments, the dielectric material includes a plurality of regions separated by gaps and configured to elastically deform and recover in response to applied pressure.