Abstract:
An apparatus and method are provided for creating an image of a microarray. The apparatus includes at least one light source configured to direct light toward the microarray. The apparatus includes an excitation filter configured to filter the light into a first frequency band towards dichromatic mirror. The dichromatic mirror reflects light onto the microarray causing the microarray to emit electromagnetic energy. The apparatus includes emission filter configured to filter the electromagnetic energy within a second frequency band. The apparatus further includes an imaging unit having a charged coupled device (CCD), the CCD having an imaging surface masked by a pinhole blind such that when the pinhole blind receives electromagnetic energy from the emission filter, an image is created of the entire micro array.
Abstract:
A machine for inspecting a container which is being conveyed along a linear path. The machine has spaced left hand and right hand cabinets in front of the linear path with the space therebetween being space in which an operator can stand to be proximate to the linear path. The machine has left hand and right hand inspection stations which include a left-hand assembly located in front of the linear path and a right hand assembly located in front of the linear path. These assemblies are pivotally mounted about vertical axes so that they can be pivoted from a closed position proximate the liner path to a retracted position away from the linear path. At the retracted position an operator can enter the machine and service the inspection stations.
Abstract:
A machine for inspecting a container which is being conveyed along a linear path. The machine has cabinets situated in front of the conveyor path at either side of a central open area in front of the conveyor path which is to be used by an operator for servicing the conveyor. The interior sides of these cabinets are open for access to electronics and the central opening is closed by a pair of doors which are releasably attached to the sides of the cabinets and can be push in to provide access to the central area and can be pulled from the cabinets to provide access to electronics through the open sides of the cabinets.
Abstract:
In a machine-vision system for inspecting a part or either object, the invention provides a method and apparatus providing illumination with high-speed changing and/or automatic adjustment of not only the illumination's angle, but also the dispersion, intensity, and/or color. Optionally, a light source emits polarized light, a machine-vision imager obtains an image, and a processor receives the image and generates a quality parameter based on the image. One or more of the various means described selectively direct the light in a predetermined pattern based on its polarization and based on the quality parameter of the image. A machine-vision method includes setting one or more illumination parameters, illuminating the object based on the one or more illumination parameters, obtaining an image of the illuminated object, generating a quality parameter based on an image quality of a predetermined region of interest in the image, and iterating using a different illumination parameter.
Abstract:
Systems, devices and methods are provided for viewing a pattern of biological material stained with dyes capable of absorbing, scattering or fluorescing light when illuminated by light emitting diodes (LEDs). The system includes a light source containing multiple light source arrays of different LED types emitting light at different wavelengths optimized for detecting specific dyes, a diffuser, a detector or viewer, and optional optical filters to ensure that the only light reaching the detector or viewer is light produced by fluorescence of the various dyes within a specific wavelength band. The optical filters are optional for detecting or viewing absorbance and light scatter. The different arrays of LED types can be selected in any combination during illumination and their intensity is adjustable over a range from 0-100%. A system and method is also provided for comparing patterns for two or more dyes contained in a single material.
Abstract:
An illumination head (1) for machine vision has an annular support (2) with first, second, third, and fourth illumination sections (3, 4, 5, and 6). The third section (5) has three sets of LEDs (12, 13, 14) arranged in a pattern so that each set illuminates at approximately the same angle. Each set is driven in succession so that a series of three monochrome images at the same angle are captured. These are superimposed by an image processor to provide a color image, although the camera is monochrome. More information can be obtained in such a color image and the high resolution and robustness of monochrome cameras is availed of.
Abstract:
A multi-color fluorescent excitation and detection device comprises at least one illumination module, a cartridge and at least one detection module. The illumination module provides an illumination light at specified range of wavelengths. The cartridge comprises a detection chip comprising plural detection wells arranged around the peripheral of the detection chip. The detection chip is circular shape. Each of the detection wells is accommodated a corresponding fluorescent dye therein. Each of the detection wells includes a first wall and a second wall. The illumination light transmits through the first wall to illuminate on the fluorescent sample so as to excite a fluorescent signal, and the fluorescent signal generated from the fluorescent sample transmits through the second wall. The detection module receives the fluorescent signal and convert the fluorescent signal to an electrical signal.
Abstract:
An illumination system for recognizing material includes a measurement stage, a light-providing part, a light-receiving part, and a processing part. The measurement stage is upwardly open and the measurement target is located on the measurement stage. The light-providing part includes a plurality of illumination sections providing incident lights to the measurement target, and provides multi-directional incident lights to the measurement target from multiple upper directions at which the measurement stage is open. The light-receiving part receives single-directional reflection lights reflected by the measurement target according to the multi-directional incident lights provided by the light-providing part. The processing part acquires a multi-directional intensity distribution of multi-directional reflection lights reflected by the measurement target according to a single-directional incident light from the single-directional reflection lights reflected by the measurement target according to the multi-directional incident lights, and determines material of the measurement target from the multi-directional intensity distribution of reflection lights. Thus, material of an object may be easily and accurately known at a low cost.
Abstract:
A cylindrical optical tomography system includes a light emitting array having a plurality of light emitting elements, a cylindrical sample holding element, and a light sensing array including a plurality of light sensing elements, wherein the light sensing array is configured to sense light emitted from the light emitting array which has passed through the sample holding module.
Abstract:
An imaging system for generating images of biological samples having a surface, the system comprising: a sample support for supporting a biological sample in use; a plurality of illumination sources, the plurality of illumination sources being arranged around the sample support and each adapted to illuminate the biological sample, in use, from a different direction; an image capture device for capturing illumination which has impinged on the biological sample to thereby form an image of the sample; wherein at least one of the illumination sources direction is not perpendicular to the surface of the sample.