摘要:
A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
摘要:
An imaging optical unit serves for imaging an object field into an image field. An imaging beam path (AS) between the object field and the image field is subdivided into a plurality of partial imaging beam paths (TAS). The imaging optical unit is embodied such that the partial imaging beam paths (TAS) run between the object field and the image field in a manner completely separated from one another and guided by optical components (M1 to M6) of the imaging optical unit, that is to say that nowhere in the beam path between the object field and the image field do the partial imaging beam paths (TAS) impinge on identical regions of beam-guiding surfaces of the imaging optical unit. This results in an imaging optical unit in which a resolution capability, particularly in the production of micro- or nanostructured semiconductor components, is increased.
摘要:
System and method for applying mask data patterns to substrate in a lithography manufacturing process are disclosed. In one embodiment, the method includes providing a parallel imaging writer system which has a plurality of spatial light modulator (SLM) imaging units arranged in one or more parallel arrays; receiving a mask data pattern to be written to a substrate, processing the mask data pattern to form a plurality of partitioned mask data patterns corresponding to different areas of the substrate, assigning one or more SLM imaging units to handle each of the partitioned mask data pattern, controlling the plurality of SLM imaging units to write the plurality of partitioned mask data patterns to the substrate in parallel, controlling movement of the plurality of SLM imaging units to cover the different areas of the substrate, and controlling movement of the substrate to be in synchronization with continuous writing of the plurality of partitioned mask data patterns.
摘要:
A method of performing nanolithography is disclosed, comprising use of an optical printing head that enables a super-resolution lithographic exposures compatible with conventional optical lithographic processes. The super-resolution exposures are carried out using light transmitted through specially designed super-resolution apertures, of which the “bow-tie” and “C-aperture” are examples. These specially designed apertures create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the object to be exposed. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the multiple individual channels and the multiple exposures.
摘要:
There is disclosed an exposure method is a method of projecting patterns (M1, M2) of a mask (M) onto a substrate to effect exposure thereof, through a plurality of projection optical units each having an enlargement magnification, and the exposure method comprises: placing the mask (M) having first pattern regions (M1) arranged discontinuously in a positional relation corresponding to the enlargement magnification, and second pattern regions (M2) provided at least in part between the first pattern regions (M1), on the object plane side of the projection optical units; projecting enlarged images of either of the first pattern regions (M1) and the second pattern regions (M2) onto the substrate disposed on the image plane side of the projection optical units to effect exposure thereof; and then projecting enlarged images of the other pattern regions onto the substrate to effect exposure thereof.
摘要:
In a method for multiply exposing at least one substrate coated with a photosensitive layer, a first exposure is carried out in accordance with a first set of exposure parameters on a first projection system (17), and a second exposure is carried out in accordance with a second set of exposure parameters on a second projection system (18) spatially separated from the first projection system (17). The projection systems are integrated in a common projection exposure installation (1). The first exposure can be carried out, for example, with an amplitude mask (6), the second exposure with a phase mask (9). The use of a number of projection systems enables multiple exposure that is performed in parallel and is therefore timesaving.
摘要:
An exposure apparatus includes a pattern generator with light switches arrayed on a plane parallel to a surface of an object to be exposed. Each of the light switches has a switching element that is a rectangular pillar of an electro-optic crystal, and a pair of polarizers arranged on respective sides in the long axis direction of the switching element. The exposure apparatus drives the light switches individually to generate an exposure pattern having a certain bright and dark form and irradiate the object to be exposed with the pattern. Furthermore, the exposure apparatus has a plurality of microlenses provided on the light-output side of the pattern generator so that the optical axes of the microlenses are aligned to the longitudinal center axes of the switching elements, so as to project images of light-output ends of the switching elements at reduced size onto the object to be exposed.
摘要:
An exposure apparatus comprises: a loading stage for supporting a substrate; a mask plate parallel to the loading stage and above the loading stage, the mask plate including a light transmitting region and a light absorbing region on its lower surface, a light reflecting region being provided in the light absorbing region; a lens device provided between the mask plate and the loading stage; a first illumination light source, light from which vertically striking on the upper surface of the mask plate from above, passing through the mask plate and striking on the loading stage via the lens device; a light reflecting device provided in the lens device; and a second illumination light source, light from which being reflected onto the lower surface of the mask plate by the light reflecting device located in the lens device, the light being reflected by the light reflecting region on the lower surface of the mask plate and striking on the loading stage via the lens device.
摘要:
An imaging apparatus including multiple spatial light modulators, each including light modulating elements arranged in two-dimensional array disposed in a homogenous light field, multiple anamorphic optical systems, each disposed downstream from an associated spatial light modulator, a scan structure, and an image stitching controller. The light modulating elements of each spatial light modulator are individually adjustable to either pass received homogenous light portions to the anamorphic optical systems, or to block/redirect the homogenous light portions, thereby generating a two-dimensional modulated light field. Each anamorphic optical system images and focuses received modulated light field onto an associated substantially one-dimensional scan line portion on the scan structure. The image stitching controller modifies the image data sent to each spatial light modulator such that selected light modulating elements are enabled or disabled, thereby electronically stitching the scan line portions to form a seamlessly stitched scan line image.
摘要:
A microlens exposure system includes a microlenses array and a mask fixed in place a predetermined space apart, wherein the gap between the microlens array and an exposure substrate can easily be adjusted with high precision to an aligned focal point position of the microlenses. Laser light for exposure is irradiated onto a resist film by microlenses of a microlens array. Light from a microscope passes through a hole in a Cr film of a mask, and the light is transmitted through a microlens and radiated onto the resist film. Whether or not the light transmitted through the microlens has an aligned focal point on the resist film is observed through the microscope, whereby the aligned focal point of exposure light made to converge by the microlenses on the resist film can be distinguished.