Abstract:
A light emitting key is disclosed. A through hole is made through piezoresistive layer; a light source is arranged under the bottom of the light emitting key. When the light source is turned on, light beams shall emit out of the top substrate. The light emitting effect of the key facilitates it to be used in a dark area such as an aircraft flying in the night sky.
Abstract:
A push button switch including a piezoelectric element (10) which is arranged between a first electrode (16) and a second electrode (18) in such a manner that, when a pressure is exerted on the piezoelectric element, an electric voltage is generated between the first and the second electrode (16, 18). The voltage generated between the first and the second electrode (16, 18) of the piezoelectric element (10) is amplified via a suitable amplifier circuit (20) and supplied, for example, to a controller of an operating device of an electronic domestic appliance.
Abstract:
A self-powered switching system using electromechanical generators generates power for activation of a latching relay, switch, solenoid or latch pin. The electromechanical generators comprise electroactive elements that may be mechanically actuated to generate electrical power. The associated signal generation circuitry may be coupled to a transmitter for sending RF signals to a receiver which actuates the latching relay. The use of mechanically activated membrane switches on the deflector or on a keypad allows multiple code sequences to be generated for activating electrical appliances. The system also uses a communications protocol allowing the receivers to respond to signals from transmitters and/or repeaters. The use of one or more repeaters also increases the reliability of the system as well as extending its effective transmission range. The receivers use low DC voltage (which may be stepped down from the high switched voltage) to generate switching signals to control a low voltage controller for control of high or low voltage switching relays.
Abstract:
Disclosed herein are a data input device and an input conversion method using the data input device. The data input device includes a detection unit provided in a predetermined input region, the detection unit processing first directional input that generates a first directional input signal through detection of lateral pressing in a predetermined radial direction by a finger placed at a reference location in the input region, second directional input that generates a second directional input signal through detection of vertical pressing in a predetermined direction in a state in which the finger is placed at the reference location, third directional input that generates a third directional input signal through detection of tilt pressing in a state in which the finger is placed at the reference location, and fourth directional input that generates a fourth directional input signal through detection of a tilt input in a state in which the finger is placed at the reference location; and a control unit configured to determine input locations of a lateral pressing direction, vertical pressing direction, tilt pressing direction and tilting direction of the finger, extract relevant data from memory, and input the extracted data; wherein the data is input through combination of two or more of the first to fourth directional inputs.
Abstract:
A micro electromechanical switch has a movable portion positioned to form an electrical connection between a first electrical contact and a second electrical contact. A piezoelectric electrode is formed on the movable portion. The piezoelectric electrode causes the movable portion to move in response to a driver voltage. A piezo element is formed on the movable portion of the switch. The piezo element is for detecting movement of the movable portion between an open position and a closed position. The piezo element is also used to detect switch bouncing when the switch transitions from the open position to the closed position. In one embodiment, the piezo element is a piezoelectric element and in another embodiment the piezo element is a piezo-resistive element.
Abstract:
A non-movable switch is located behind an interior trim component of a motor vehicle. The location of the switch is hidden until a status condition of the motor vehicle occurs. When the status condition occurs, the location of the switch becomes visibly apparent and the switch becomes active and operable.
Abstract:
The present invention relates to a method for the production of a combined piezo/luminescent film for use as actuating element, especially in vehicles, comprising the steps: provision of a film-type base material (1); application of a piezoelectric varnish (2) onto the base material at least in a first partial area (A1, A2) so as to form a piezoelectric switch surface in the first partial area; application of a luminescent varnish (3) onto the base material in at least a second partial area (B1, B2) so as to be able to illuminate the switch surface in the second partial area; covering at least of the first and second partial area with a top layer (4) that is bonded to the base material. In addition, the present invention describes an actuating element with a combined piezo/luminescent film produced in such a manner.
Abstract:
The present invention comprises a signal generator for sending an electrical signal from an expandable, flexible layer of material, the signal generator comprising an upper layer of flexible, resilient material and a lower layer of flexible, resilient material which between them define a cavity for enclosing an expandable material such as a cellular foam or gas, whereupon localized distortion of one of the layers of flexible material, effects a signal generation within the structure, which is transmissible through a proper circuit to an outside electrical device. A circuit may be arranged adjacent a plurality of said keys which senses when several of said keys are depressed in a skewed or sideways manner, so as to effect movement of a cursor or pointer on a monitor in communication with a processing unit and said keyboard.
Abstract:
The present invention comprises a signal generator for sending an electrical signal from an expandable, flexible layer of material, the signal generator comprising an upper layer of flexible, resilient material and a lower layer of flexible, resilient material which between them define a cavity for enclosing an expandable material such as a cellular foam or gas, whereupon localized distortion of one of the layers of flexible material, effects a signal generation within the structure, which is transmissible through a proper circuit to an outside electrical device. A circuit may be arranged adjacent a plurality of said keys which senses when several of said keys are depressed in a skewed or sideways manner, so as to effect movement of a cursor or pointer on a monitor in communication with a processing unit and said keyboard.
Abstract:
A first electrode and a second electrode are disposed on a base board. A resist is formed on the base board so as to cover the first electrode. A capacitance-operated silicon rubber sensor is provided on the base board so as to cover the resist and the second electrode. A click rubber is disposed above the silicon rubber sensor. A button deforms the click rubber so as to press down the silicon rubber sensor and the resist. The silicon rubber sensor and the resist generates an analog output signal between the first and second electrodes in proportion to a force pressing the button, when the pressing force is larger than a predetermined pressing force enough to deform the click rubber so as to establish the output signal.