Abstract:
Disclosed herein are a high-voltage generator for an x-ray source, an x-ray gun, an electron beam apparatus, a rotary vacuum seal, a target assembly for an x-ray source, a rotary x-ray emission target, and an x-ray source. These various aspects may separately and/or together enable the construction of an x-ray source which can operate at energies of up to 500 kV and beyond, which is suitable for use in commercial and research x-ray applications such as computerised tomography. In particular, the high-voltage generator includes a shield electrode electrically connected intermediate of a first voltage multiplier and a second voltage multiplier. The electron beam apparatus includes control photodetectors and photo emitters having a transparent conductive shield arranged therebetween. The rotary vacuum seal includes a pumpable chamber at a position intermediate between high-pressure and low-pressure ends of a bore for a rotating shaft. The rotary target assembly is configured such that when a torque between a bearing housing and a vacuum housing exceeds a predetermined torque, the bearing housing rotates relative to the vacuum housing. The rotary x-ray emission target has a plurality of target plates supported on a hub, the plates being arranged on the hub to provide an annular target region about an axis rotation of the hub. The x-ray gun is provided with a shield electrode maintained at a potential difference relative to the x-ray target different to the electron beam emission cathode.
Abstract:
The X-ray tube disclosed herein includes an electron emission part including an electron emission element using a cold cathode; an anode part having an anode surface with which an electron emitted from the electron emission part collides; and a focusing structure disposed between the electron emission part and a target part disposed on the anode surface. The focusing structure has a plurality of focal point areas that are applied with a voltage in a mutually independent manner. The electron emission part has first and second electron beam emission areas that are on/off controlled in a mutually independent manner. The X-ray tube is designed in such a way that a collision area of the electron beam emitted from each of the first and second electron beam emission areas on the anode surface moves in response to a voltage applied to the focusing structure.
Abstract:
A radiation generator may include an elongate generator housing having a proximal end and a distal end, a target electrode within the elongate generator housing at the distal end thereof, a charged particle source within the elongate generator housing at the proximal end thereof to direct charged particles at the target electrode. A plurality of accelerator electrodes may be spaced apart within the elongate generator housing between the target electrode and the charged particle source to define a charged particle accelerator section. Each accelerator electrode may include an annular portion having a first opening therein, and a frustoconical portion having a base coupled to the first opening of the annular portion and having a second opening so that charged particles from the charged particle source pass through the first and second openings to reach the target electrode.
Abstract:
An x-ray tube includes a vacuum housing. A cathode and an anode are disposed in the vacuum housing and insulated by at least one insulation element. Upon application of a high voltage, the cathode emits electrons that strike the anode as an electron beam. A voltage arrester device with an insulation path has a field strength that is higher than a field strength at the insulation element. If a voltage flashover occurs, the voltage is discharged via the voltage arrester device.
Abstract:
According to one embodiment, an X-ray tube includes an envelope including an inner space which is evacuated and is tightly closed and also including an X-ray radiation window, a cathode supporting member provided in the envelope, a cathode secured to the cathode supporting member, emitting electrons, and radiating heat, an anode target provided in the envelope, opposed to the X-ray radiation window, and radiating X-rays due to collision of the electrons emitted from the cathode, and a non-evaporable getter thermally connected to the cathode supporting member on the cathode side and activated by heat due to thermal conduction from the cathode supporting member.
Abstract:
An X-ray diagnosis apparatus according to an embodiment includes an X-ray tube, judging circuitry, and grid controlling circuitry. The X-ray tube is configured to radiate X-rays. The judging circuitry is configured to judge whether a voltage should be applied to a grid of the X-ray tube or not, in accordance with a radiation condition. The grid controlling circuitry is configured to apply the voltage to the grid, if the judging circuitry has determined that the voltage should be applied.
Abstract:
A radiation generating tube includes a vacuum envelope formed by an insulating tube, a cathode and an anode. At least one of the cathode and the anode is bonded to the insulating tube via a conductive bonding material disposed between bonded surfaces facing each other. The conductive bonding material is partially protruding from between the bonded surfaces to an outer peripheral surface or an inner peripheral surface of the insulating tube. A concave portion is formed on the outer peripheral surface or the inner peripheral surface of the insulating tube adjacent to a bonded surface on an insulating tube side, and a distal end of a conductive bonding material protruding from between bonded surfaces is accommodated in the concave portion.
Abstract:
The different advantageous embodiments provide a method and apparatus. The apparatus comprises a moveable platform, a housing connected to the moveable platform, a power supply located inside of the housing, and an x-ray tube located inside of the housing. The power supply and the x-ray tube are immersed in a coolant. The x-ray tube is configured to generate an x-ray beam.
Abstract:
The present specification discloses an X-ray scanning system with a non-rotating X-ray scanner that generates scanning data defining a tomographic X-ray image of the object and a processor executing programmatic instructions where the executing processor analyzes the scanning data to extract at least one parameter of the tomographic X-ray image and where the processor is configured to determine if the object comprises a liquid, sharp object, narcotic, currency, nuclear materials, cigarettes or fire-arms.
Abstract:
In one embodiment, an X-ray tube is provided. The X-ray tube comprises at least one thermionic cathode configured to generate an electron beam, a target assembly configured to generate X-rays when impinged with the electron beam emitted from the thermionic cathode, a high voltage supply unit for establishing an output voltage across the thermionic cathode and the target assembly for establishing an accelerating electric field between the thermionic cathode and the target assembly and a mesh grid disposed between the thermionic cathode and the target assembly, the mesh grid configured to operate at a voltage so as to lower the electric field applied at the surface of the thermionic cathode. Further, the voltage at the mesh grid is negatively biased with respect to the voltage at the thermionic cathode.